Sử dụng phương pháp đổi biến để tìm nguyên hàm

1. Kiến thức cần nhớ

- Vi phân:

\(\begin{array}{l}t = u\left( x \right) \Rightarrow dt = u'\left( x \right)dx\\u\left( t \right) = v\left( x \right) \Rightarrow u'\left( t \right)dt = v'\left( x \right)dx\end{array}\)

- Công thức đổi biến:

\(\int {f\left[ {u\left( x \right)} \right]u'\left( x \right)dx}  = \int {f\left( t \right)dt} \) \( = F\left( t \right) + C = F\left( {t\left( x \right)} \right) + C\)

2. Một số dạng toán thường gặp

Dạng 1: Tính nguyên hàm bằng phương pháp đổi biến \(t = u\left( x \right)\).

- Bước 1: Đặt \(t = u\left( x \right)\), trong đó \(u\left( x \right)\) là hàm được chọn thích hợp.

- Bước 2: Tính vi phân \(dt = u'\left( x \right)dx\).

- Bước 3: Biến đổi \(f\left( x \right)dx\) thành \(g\left( t \right)dt\).

- Bước 4: Tính nguyên hàm: \(\int {f\left( x \right)dx}  = \int {g\left( t \right)dt} \) \( = G\left( t \right) + C = G\left( {u\left( x \right)} \right) + C\).

Ví dụ: Tính nguyên hàm \(\int {2x\sqrt {{x^2} + 1} dx} \).

Giải:

Đặt \(t = \sqrt {{x^2} + 1}  \Rightarrow {t^2} = {x^2} + 1 \) \( \Rightarrow 2tdt = 2xdx\).

Do đó: \(\int {2x\sqrt {{x^2} + 1} dx}  = \int {\sqrt {{x^2} + 1} .2xdx}  \) \(= \int {t.2tdt}  = \int {2{t^2}dt}  = \dfrac{2}{3}{t^3} + C \) \(= \dfrac{2}{3}\sqrt {{{\left( {{x^2} + 1} \right)}^3}}  + C\).

Dạng 2: Tính nguyên hàm bằng phương pháp đổi biến \(x = u\left( t \right)\).

- Bước 1: Đặt \(x = u\left( t \right)\), trong đó \(u\left( t \right)\) là hàm số ta chọn thích hợp.

- Bước 2: Lấy vi phân 2 vế \(dx = u'\left( t \right)dt\).

- Bước 3: Biến đổi \(f\left( x \right)dx = f\left( {u\left( t \right)} \right).u'\left( t \right)dt = g\left( t \right)dt\).

- Bước 4: Tính nguyên hàm theo công thức \(\int {f\left( x \right)dx}  = \int {g\left( t \right)dt}  = G\left( t \right) + C\)

Chia sẻ bài viết:
(Nguồn: vungoi.vn)
Mục lục Trang chủ Tài khoản