PHIẾU HỌC TẬP TOÁN 9 TUẦN 13
Đại số 9: §5: Hệ số góc của đường thẳng y = ax + b $left
Hình học 9: §3: Liên hệ giữa dây và khoảng cách từ tâm đến dây.
Bài 1: TS lớp 10 Ninh Thuận 13 – 14
Viết phương trình đường thẳng $left
Bài 2: TS lớp 10 Kiên Giang 12 – 13
Cho đường thẳng $left
a) Với giá trị nào của $m$ thì $left
b) Với giá trị nào của $m$ thì $left
Bài 3: TS lớp 10 Cần Thơ 11 – 12.
Xác định $m$ để đường thẳng $y=left
Bài 4: Cho
a) EH = EK b) EA = EC.
Bài 5: Cho tam giác ABC vuông tại A, nội tiếp đường tròn tâm O, bán kính R = 3.
Biết $SinB=dfrac{2}{3}$ .
a) Hai dây AB và AC, dây nào gần tâm O hơn?
b) Một đường thẳng qua O song song với AC cắt AB tại I. Tính IB và IO.
– Hết –
PHẦN HƯỚNG DẪN GIẢI
Bài 1
Do đường thẳng $left
a = 7\
1 = 7.2 + b
end{array} right. Leftrightarrow left{ begin{array}{l}
a = 7\
b = – 13
end{array} right.$.
Vậy $y=7x-13$.
Bài 2 Hướng dẫn giải
a) Để đường thẳng $left
4m + 8 + 1 – m = 0\
m ne – 2
end{array} right. Leftrightarrow m = – 3$
b) Để hàm số $y=dfrac{1-m}{m+2}x+left
Bài 3:
Để đường thẳng $y=left
Bài 4: HD: Vì H, K lần lượt là trung điểm của AB và CD nên $OHbot AB;OKbot CD$
a)$Delta OHE=Delta OKE$
b) Có HA = HB = KC = KD
Bài 5:
a) Tam giác ABC vuông tại A nội tiếp đường tròn
Ta có $AC=BC.SinB$=$6.dfrac{2}{3}=4$ .
Áp dụng định lý Pytago vào tam giác vuông ABC vuông tại A ta có
$B{{C}^{2}}=A{{B}^{2}}+A{{C}^{2}}$ $Rightarrow AB=sqrt{B{{C}^{2}}-A{{C}^{2}}}=sqrt{20}$
Ta có AC$AC=4=sqrt{16}<AB=sqrt{20}$ . Vậy dây AB gần tâm hơn dây AC.
b) Ta có OI // AC và $ACbot AB$ nên $OIbot AB$ hay I là trung điểm của AB
Tam giác ABC có IO là đường trung bình nên $IO=dfrac{1}{2}AC=2$
HẾT