PHIẾU HỌC TẬP TOÁN 8 TUẦN 26
Đại số 8 : Kiểm tra chương III: Phương trình bậc nhất một ẩn
Hình học 8: Trường hợp đồng dạng thứ ba: Góc – góc
Bài 1: Giải các phương trình sau:
a) $4x-~12=0$ b) $xleft
Bài 2: Một xe máy đi từ A đến B với vận tốc 50km/h. Đến B người đó nghỉ 15 phút rồi quay về A với vận tốc 40km/h. Biết thời gian tổng cộng hết 2 giờ 30 phút. Tính quãng đường AB.
Bài 3: Một người đi xe máy từ A đến B với vận tốc trung bình 40 km/h. Lúc về người ấy đi với vận tốc trung bình 30km/h, biết rằng thời gian cả đi lẫn về hết 3giờ 30 phút. Tính quãng đường AB.
Bài 4: Giải phương trình : $frac{x-3}{2011}+frac{x-2}{2012}=frac{x-2012}{2}+frac{x-2011}{3}$
Bài 5: Cho tam giác ABC vuông góc tại A có đường phân giác BD cắt đường cao AH tại I. Chứng minh AD.BD = BI.DC.
Bài 6: Cho hình bình hành ABCD có góc A tù. Từ A, vẽ các đường thẳng vuông góc với BC, CD cắt CD, BC tương ứng tại E và F. Đường thẳng qua A vuông góc với BD, cắt EF tại M. Chứng minh ME = MF.
Bài 7: Cho tam giác ABC có các trung tuyến AD, BE thỏa mãn điều kiện $widehat{CAD}=widehat{CBE}={{30}^{0}}$. Chứng minh ABC là tam giác đều.
– Hết –
PHẦN HƯỚNG DẪN GIẢI
Bài 1:
a) 4x – 12 = 0 $Leftrightarrow $ 4x = 12 $Leftrightarrow $ x = 3 Vậy tập nghiệm của phương trình là S = $left{ 3 right}$
|
b) $xleft $Leftrightarrow $ ${{x}^{2}}+x{{x}^{2}}+3x2x+6=7$ $Leftrightarrow $ 2x = 1$Leftrightarrow $ x = $frac{1}{2}$ KL:
|
c)$frac{{x – 3}}{{x + 1}} = frac{{{x^2}}}{{{x^2} – 1}}$ (ĐKXĐ : x$ ne pm 1$ ) Qui đồng và khử mẫu phương trình ta được: $left Vậy tập nghiệm của phương trình là S = $left{ {frac{4}{3}} right}$ |
Bài 2: 15 phút=$frac{1}{4}
Gọi x là quãng đường AB
Thời gian đi : $frac{x}{50}
Thời gian về : $frac{x}{40}
Theo đề bài ta có phương trình : $frac{x}{50}+frac{x}{40}+frac{1}{4}=frac{5}{2}$
Giải phương trình ta được : x = 50
Vậy quãng đường AB là 50 km.
Bài 3: Gọi quảng đường AB dài x
Thời gian đi từ A đến B là $frac{x}{40}$
Thời gian lúc về là $frac{x}{30}$
Đổi 3giờ 30 phút = $frac{7}{2}$giờ
Theo bài toán ta có phương trình :$frac{x}{40}+frac{x}{30}=frac{7}{2}$
$Leftrightarrow 3x+4x=,420$
Û x = 60
Vậy quãng đường AB dài 60 km
Bài 4: $frac{x-3}{2011}+frac{x-2}{2012}=frac{x-2012}{2}+frac{x-2011}{3}$
$Leftrightarrow $ $left
$Leftrightarrow $$frac{x-2014}{2011}+frac{x-2014}{2012}=frac{x-2014}{2}+frac{x-2014}{3}$
$Leftrightarrow $$frac{x-2014}{2011}+frac{x-2014}{2012}-frac{x-2014}{2}-frac{x-2014}{3}=0$
$Leftrightarrow $$left
$Leftrightarrow $x – 2014 = 0 vì $left
$Leftrightarrow $ x = 2014
Vậy tập nghiệm của phương trình là S={2014}
Bài 5:
${Delta mathrm { IAB }}$và ${Delta mathrm { DCB }}$
có $widehat{ABI}=widehat{CBD};widehat{IAB}=widehat{DCB}$
${Delta $ ABC có BD là đường phân giác nên ${frac { A B } { B C } = frac { A D } { D C }}$
Do đó $frac{text{BI}}{text{BD}}=frac{text{AD}}{text{DC}}Rightarrow text{AD}.text{BD}=text{BI}text{.DC}$.
Bài 6:
Từ giả thiết suy ra C là trực tâm ∆AEF nên AC ^ EF .
Kết hợp với BD ^ AM và ED^ AF
theo tính chất góc có cạnh tương ứng vuông góc ta có:
$widehat{ICD}=widehat{MFA}$; $widehat{CDI}=widehat{Mtext{AF}}$ Þ $Delta ICD~Delta MFA$ Þ${frac { mathrm { IC } } { mathrm { ID } } = frac { mathrm { MF } } { mathrm { MA } }}$
Tương tự $Delta ICBtext{ }Delta MEA$
Từ
Bài 7:
Ta có ∆ADC ∆BEC
$ Rightarrow $CA = 2.CD. Mặt khác
Từ
– Hết –