Lời giải đề 18-trang 2

Câu 5: 3,0đim

            Cho tam giác ABC cân tại A. Gọi M là điểm bất kì nằm trên cạnh AC MkhôngtrùngAvàC. Một đường thẳng đi qua điểm M cắt cạnh BC tại I và cắt cạnh AB tại N sao cho I là trung điểm của đoạn thẳng MN. Đường phân giác trong của góc $widehat{BAC}$ cắt đường tròn ngoại tiếp tam giác AMN tại điểm D DkhôngtrùngA. Chứng minh rằng:

a. $DN=DM$ và $DIbot MN$

Giải

Ta có $widehat{NAD}=widehat{DAM}$ Do$AD$làphângiáctrongcagóc$widehatBAC$ nên $oversetfrown{DN}=oversetfrown{DM}Rightarrow DN=DM$

Từ đó tam giác $DNM$ cân tại D có $IN=IMRightarrow DI$ vừa là đường trung tuyến vừa là đường cao của $Delta DMN$ nên $DIbot MN$

b. Tứ giác BNDI nội tiếp

Giải

Ta có $oversetfrown{ND}=oversetfrown{MD}Rightarrow widehat{NAD}=widehat{MND,,},,,,left1right$

Mà $widehat{ABC}+widehat{NAD}={{90}^{0}},,left2right,,,,widehat{NDI}+widehat{MND}={{90}^{0}},,left3right$

Từ 1, 23 suy ra $widehat{ABC}=widehat{NDI}$ . Suy ra tứ giác BNDI nội tiếp.

c. Đường tròn ngoại tiếp tam giác ABC luôn đi qua một điểm cố định KhácđimA khi M di chuyển trên canh AC.

Giải

Theo kết quả câu b) ta có tứ giác BNDI nội tiếp, suy ra $widehat{NBD}=widehat{NID}={{90}^{0}}Rightarrow DBbot AB$ tại B nên đường thẳng BD cố định.

Mặt khác điểm D nằm trên đường phân giác trong AD của góc $widehat{BAC}$ cđnh nên đường thẳng AD cố định, suy ra D cố định.

Vậy đường tròn ngoại tiếp tam giác AMN luôn đi qua điểm D cố định đpcm

Câu 6: 1,0đim

Cho hình chữ nhật ABCD với $AB=2a,BC=a.$ Khi quay hình chữ nhật ABCD quanh cạnh AB một vòng thì được hình trụ có thể tích ${{V}_{1}}$  và khi quay hình chữ nhật ABCD quanh cạnh BC một vòng thì được hình trụ có thể tích ${{V}_{2}}.$ Tính tỉ số $frac{{{V}_{1}}}{{{V}_{2}}}.$

Giải

Khi quay hình chữ nhật ABCD quanh cạnh AB một vòng thì ta được hình trụ có: ${{r}_{1}}=a,{{h}_{1}}=2aRightarrow {{V}_{1}}=2pi {{a}^{3}}$

Khi quay hình chữ nhật ABCD quanh cạnh BC một vòng thì ta được hình trụ có: ${{r}_{2}}=2a,{{h}_{2}}=aRightarrow {{V}_{2}}=4pi {{a}^{3}}$

Vậy $dfrac{{{V}_{1}}}{{{V}_{2}}}=dfrac{1}{2}.$

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *