Loading [MathJax]/extensions/tex2jax.js

Lời giải đề 13: đề thi thử THPTQG môn Toán trường TPHT Hoàng Hoa Thám năm 2018-2019 lần 1-trang 2

Câu 31.  

Gọi$AD=x$, $CD=y$, ($x$, $y>0$).

Theo giả thiết ta có ${{V}_{S.ABCD}}=frac{1}{3}.SA.{{S}_{ABCD}}=66sqrt{3}$$Leftrightarrow {{S}_{ABCD}}=22sqrt{3}$.

Lại có ${{S}_{ABCD}}={{S}_{ABD}}+{{S}_{BCD}}=frac{1}{2}.AB.AD+frac{1}{2}.BC.CD=frac{1}{2}.5sqrt{3}.x+frac{1}{2}.3sqrt{3}.y$

$Leftrightarrow frac{1}{2}.5sqrt{3}.x+frac{1}{2}.3sqrt{3}.y=22sqrt{3}Leftrightarrow 5x+3y=44,,,left1right$.

Vì $Delta ABD$ và $Delta BCD$ vuông, ta có $B{{D}^{2}}=A{{B}^{2}}+A{{D}^{2}}=C{{D}^{2}}+C{{B}^{2}}$

$Leftrightarrow 75+{{x}^{2}}=27+{{y}^{2}}$$Leftrightarrow {{x}^{2}}-{{y}^{2}}=-48,,,left2right$.

Từ $left1right$ta có $y=frac{44-5x}{3}$, $left445x>0,,,,left(3right right)$, thế vào 2 ta được

${{x}^{2}}-{{leftfrac445x3right}^{2}}=-48Leftrightarrow 2{{x}^{2}}-55x+188=0$$ Leftrightarrow left[ begin{array}{l}
x = 4leftTM,left(3right)right\
x = frac{{47}}{2}leftKTM,doleft(3right)right
end{array} right.$

Vậy$AD=4$, $CD=8$.

Kẻ $AHbot BD$, $BDbot SA$ vì$SAbotleft(ABCDright$) $Rightarrow BDbot leftSAHright$$Rightarrow BDbot SH$.

Lại có $left{ begin{array}{l}
leftSBDright cap leftABCDright = BD\
SH bot BD\
AH bot BD
end{array} right.$

Suy ra góc giữa hai mặt phẳng $leftSBDright$ và $leftABCDright$ là góc giữa hai đường thẳng $SH$ và $AH$ và là góc $widehat{SHA}$ vì$DeltaSAH$vuôngti$A$.

Xét $Delta ABD$ vuông tại $A$, đường cao $AH$, ta có $frac{1}{A{{H}^{2}}}=frac{1}{A{{B}^{2}}}+frac{1}{A{{D}^{2}}}$$Rightarrow AH=frac{20sqrt{273}}{91}$.

Xét $Delta SAH$ vuông tại $A$, ta có $cot widehat{SHA}=frac{AH}{SA}=frac{20sqrt{273}}{819}$.

Vậy giá trị cần tính là $cot widehat{SHA}=frac{20sqrt{273}}{819}$.

Câu 32.   Ta có: $Fleftxright=xln leftx2xright-int{frac{xleft2x1right}{{{x}^{2}}-x}}text{d}x=xln leftx2xright-int{frac{2x-1}{x-1}text{d}x}$

$=xln leftx2xright-int{left2+frac1x1right}text{d}x=xln leftx2xright-2x-ln left| x-1 right|+C$.

$Fleft2right=2ln 2-4$$Leftrightarrow 2ln 2-4+C=2ln 2-4$$Leftrightarrow C=0$.

Suy ra: $Fleftxright=xln leftx2xright-2x-ln left| x-1 right|$.

Khi đó: $I=intlimits_{2}^{3}{leftfracxlnleft(x2xright)2xlnleft(x1right)+2x+lnleft(x1right)xright}text{d}x$

$=intlimits_{2}^{3}{ln leftx2xright}text{d}x=leftxlnleft(x2xright)2xlnleft(x1right)rightleft| _{2}^{3} right.$

$=3ln 6-6-ln 2-2ln 2+4=3ln 3-2$.

Câu 33.   Ta có ${g}’leftxright={f}’leftx1right-1$.

${g}’leftxrightge 0Leftrightarrow {f}’leftx1right-1ge 0Leftrightarrow {f}’leftx1rightge 1$ $ Leftrightarrow left[ begin{array}{l}
x – 1 le  – 1\
x – 1 ge 2
end{array} right. Leftrightarrow left[ begin{array}{l}
x le 0\
x ge 3
end{array} right..$

Từ đó suy ra hàm số $gleftxright=fleftx1right+frac{2019-2018x}{2018}$ đồng biến trên khoảng $lefttext1;0right$.

Câu 34.   Cách 1:

                                       

Gọi $H$ là trung điểm $AB$.

Vì $leftSABrightbot leftABCright$ nên $SHbot leftABCright$. $$  $$  $$

Chọn hệ trục tọa độ $Oxyz$, với $Oequiv H$, $HBequiv Ox$, $HCequiv Oy$, $HSequiv Oz$.

Ta có: $HC=sqrt{A{{C}^{2}}-A{{H}^{2}}}=3a$; $SH=frac{AH}{tan ASH}=a$. $$

Khi đó: $Hleft0,;,0,;,0right$, $Sleft0,;,0,;,aright$, $Aleftasqrt3,;,0,;,0right$, $Bleftasqrt3,;,0,;,0right$, $Cleft0,;,3a,;,0right$, $Mleft0,;,frac3a2,;,fraca2right$,$Nleft0,;,frac9a4,;,fraca4right$.

Suy ra: $overrightarrow{AM}=leftasqrt3,;,frac3a2,;,fraca2right$, $overrightarrow{BN}=leftasqrt3,;,frac9a4,;,fraca4right$, $overrightarrow{AB}=left2asqrt3,;,0,;,0right$, $leftoverrightarrowAM,,,overrightarrowBNright=leftfrac3a24,;,frac3sqrt3a24,;,frac15sqrt3a24right$.

Khoảng cách giữa hai đường thẳng $AM,,BN$ là$dleftAM,,,BNright=frac{left| leftoverrightarrowAM,,,overrightarrowBNright.overrightarrow{AB} right|}{left| leftoverrightarrowAM,,,overrightarrowBNright right|}=frac{frac{3sqrt{3}{{a}^{3}}}{2}}{frac{sqrt{711}{{a}^{2}}}{4}}=frac{2sqrt{237}a}{79}$.

Cách 2:

                                     

Gọi $P$ là trung điểm của $AC$, $G$ là trọng tâm tam giác $ABC$. 

Kẻ $NK,//,SH$, $Kin HC$; $EK,//,AC$, $Ein BP$. 

Suy ra: $NP,//,AMRightarrow AM,//,leftNPBrightRightarrow dleftAM,,,BNright=dleftM,,,left(NPBright right)=dleftC,,,left(NPBright right)$.

Ta có: $NK,//,SH$ nên $frac{{NK}}{{SH}} = frac{{KC}}{{CH}} = frac{{CN}}{{CS}} = frac{1}{4} Rightarrow left{ begin{array}{l}
NK = frac{1}{4}SH = frac{a}{4}\
frac{{GK}}{{GC}} = frac{5}{8}
end{array} right.$

          $EK,//,AC$ nên $frac{EK}{PC}=frac{GK}{GC}=frac{5}{8}Rightarrow EK=frac{5}{8}PC=frac{5sqrt{3}a}{8}$.

         $NE=sqrt{N{{K}^{2}}+E{{K}^{2}}}=frac{asqrt{79}}{8}$; $BP=HC=3a$.

Vì:  $left{ begin{array}{l}
KN bot BP\
KE bot BP
end{array} right. Rightarrow BO bot leftNPBright Rightarrow BP bot EN$

Diện tích tam giác $NBP$ là: ${{S}_{Delta NBP}}=frac{1}{2}NE.BP=frac{3sqrt{79}a}{16}$.

Thể tích tứ diện $N.CPB$ là: ${{V}_{N.CPB}}=frac{1}{3}dleftN,,,left(ABCright right).{{S}_{Delta CBP}}=frac{1}{3}.frac{1}{4}.SH.frac{1}{2}.BP.PC=frac{1}{24}.a.3a.asqrt{3}=frac{sqrt{3}{{a}^{3}}}{8}$.

Khoảng cách từ $C$ đến $leftNBPright$ là: $dleftC,,,left(NBPright right)=frac{3{{V}_{N.CPB}}}{{{S}_{Delta NBP}}}=frac{2sqrt{237}a}{79}$. $$  $$ $$ 

Vậy khoảng cách giữa hai đường thẳng $AM,,BN$ là $frac{2asqrt{237}}{79}$.

Cách 3: 

Kẻ $KIbot NE$, $Iin NE$.

Khi đó: $NP,//,AMRightarrow AM,//,leftNPBrightRightarrow dleftAM,,,BNright=dleftM,,,left(NPBright right)=dleftC,,,left(NPBright right)=frac{8}{5}dleftK,,,left(NPBright right)$.

Ta có: $left{ begin{array}{l}
KI bot NE\
KI bot BP
end{array} right. Rightarrow KI bot leftNPBright Rightarrow dleftK,,,left(NPBright)right = KI$

Suy ra: $NP,//,AMRightarrow AM,//,leftNPBrightRightarrow dleftAM,,,BNright=frac{8}{5}KI$.

Trong tam giác vuông $NKE$ ta có: $frac{1}{K{{I}^{2}}}=frac{1}{K{{N}^{2}}}+frac{1}{K{{E}^{2}}}=frac{1264}{75{{a}^{2}}}Rightarrow KI=frac{5sqrt{237}a}{316}Rightarrow dleftAM,,,BNright=frac{2sqrt{237}a}{79}$.

Câu 35.  

                                               

${g}’leftxright=3{f}’leftfleft(xright right).{f}’leftxright$ .

${g}’leftxright=0Leftrightarrow 3{f}’leftfleft(xright right).{f}’leftxright=0$ $ Leftrightarrow left[ begin{array}{l}
f’leftfleft(xright)right = 0\
f’leftxright = 0
end{array} right.$ $ Leftrightarrow left[ begin{array}{l}
fleftxright = 0\
fleftxright = a\
x = 0\
x = a
end{array} right.$, $left2<a<3right$.

$fleftxright=0$ có 3 nghiệm đơn phân biệt ${{x}_{1}}$, ${{x}_{2}}$, ${{x}_{3}}$ khác $0$ và $a$.

Vì $2<a<3$  nên$fleftxright=a$ có 3 nghiệm đơn phân biệt ${{x}_{4}}$, ${{x}_{5}}$, ${{x}_{6}}$ khác ${{x}_{1}}$, ${{x}_{2}}$, ${{x}_{3}}$, $0$, $a$.

Suy ra ${g}’leftxright=0$ có 8 nghiệm đơn phân biệt. Do đó hàm số  $gleftxright=3fleftfleft(xright right)+4$có 8 điểm cực trị.

Câu 36.   Phương trình mặt phẳng $leftABCright$ theođonchn

$frac{x}{2}+frac{y}{-1}+frac{z}{-3}=1Leftrightarrow -3x+6y+2z+6=0$.

Câu 37.  

 

Ta có: ${y}’=left2fleft(xright)4right{{pi }^{2fleftxright,,-,,4x}}ln pi $.

${y}’=0Leftrightarrow 2{f}’leftxright-4=0Leftrightarrow {f}’leftxright=2$.

 Đồ thị hàm số $y={f}’leftxright$ nhận được từ việc tịnh tiến đồ thị hàm số $y={f}’leftx1right$sang trái 1  đơn vị

 

 nên ${f}’leftxright=2$ $ Leftrightarrow left[ begin{array}{l}
x =  – 2\
x = 0\
x = 1
end{array} right.$

Do $x=-2$ và $x=1$ là nghiệm bội chẵn nên ta có bảng biến thiên sau:

Câu 38 . Tập xác định: $D=mathbb{R}.$Từ bảng biến thiên ta có hàm số đạt cực tiểu tại $x=0$.

Ta có:  ${y}’=4leftm1right{{x}^{3}}-2leftm22rightx$     

 *  Điều kiện cần:

 Điều kiện cần để hàm số đạt cực tiểu tại $x=-1$ là $f’left1right=0$ $Leftrightarrow -4leftm1right+2leftm22right=0$

    $Leftrightarrow 2{{m}^{2}}-4m=0$$ Leftrightarrow left[ begin{array}{l}
m = 0\
m = 2
end{array} right.$

 * Điều kiện đủ:

  Trường hợp 1:  $m=0$  hàm số trở thành $y=-{{x}^{4}}+2{{x}^{2}}+2019$

 Ta có: $y’=0$$Leftrightarrow -4{{x}^{3}}+4x=0$ $ Leftrightarrow left[ begin{array}{l}
x =  – 1\
x = 0\
x = 1
end{array} right.$

Bảng biến thiên:

Từ bảng biến thiên ta có hàm số đạt cực đại tại $x=-1$ nên loại $m=0$.

Trường hợp 2:  $m=2$  hàm số trở thành $y={{x}^{4}}-2{{x}^{2}}+2019$.

Ta có: $y’=0$$Leftrightarrow 4{{x}^{3}}-4x=0$$ Leftrightarrow left[ begin{array}{l}
x =  – 1\
x = 0\
x = 1
end{array} right.$

Bảng biến thiên:

                                       

Từ bảng biến thiên ta có hàm số đạt cực tiểu tại $x=-1$. Chọn $m=2$.

Vậy với $m=2$ thì hàm số $y=leftm1right{{x}^{4}}-leftm22right{{x}^{2}}+2019$ đạt cực tiểu tại $x=-1$.

Cách 2: Kiểm tra điều kiện đủ, LưuThêm.

–      Với $m=0$, hàm số trở thành $y=-{{x}^{4}}+2{{x}^{2}}+2019$.

${y}’=-4{{x}^{3}}+4x$, ${{y}’}’=-12{{x}^{2}}+4$.

Ta có: $left{ begin{array}{l}
y’left1right = 0\
y”left1right =  – 8 < 0
end{array} right.$, suy ra hàm số đạt cực đại tại $x=-1$ nên loại $m=0$.

–      Với $m=2$, hàm số trở thành $y={{x}^{4}}-2{{x}^{2}}+2019$.

${y}’=4{{x}^{3}}-4x$, ${{y}’}’=12{{x}^{2}}-4$.

Ta có: $left{ begin{array}{l}
y’left1right = 0\
y”left1right = 8 > 0
end{array} right.$
, suy ra hàm số đạt cực tiểu tại $x=-1$ nên chọn $m=2$.

Kết luận: $m=2$.

Câu 39 . 

 

Điều kiện: $xin left1;frac73right$.

Xét phương trình: $2.fleft33sqrt9x2+30x21right=m-2019 left1right$.

Ta có : $-9{{x}^{2}}+30x-21=4-{{left3x5right}^{2}}$ $Rightarrow 0le sqrt{4-{{left3x5right}^{2}}}le 2Rightarrow -3le 3-3sqrt{4-{{left3x5right}^{2}}}le 3$.

Đặt $t=3-3sqrt{-9{{x}^{2}}+30x-21}$, $tin left3;3right$.

Khi đó, phương trình $left1right$ trở thành: $2.flefttright=m-2019Leftrightarrow flefttright=frac{m-2019}{2} left2right$.

Phương trình $left1right$ có nghiệm $xin left1;frac73right$$Leftrightarrow $phương trình $left2right$ có nghiệm $tin left3;3right$.

Dựa vào đồ thị của hàm số $y=fleftxright$, phương trình $left2right$ có nghiệm $tin left3;3right$ khi và chỉ khi$-5le frac{m-2019}{2}le 1Leftrightarrow 2009le mle 2021$.

Do $min mathbb{Z} Rightarrow min left{ 2009, 2010,…, 2021 right}$.

Vậy số giá trị nguyên của $m$ là: $2021-2009+1=13$.

Câu 40.   Ta có: $intlimits_{1}^{4}{{F}’,leftxright}text{d}x=intlimits_{1}^{4}{frac{1}{2x-1}}text{d}x=left. frac{1}{2}ln |2x-1| right|_{1}^{4}=frac{1}{2}ln 7$.

Lại có: $intlimits_{1}^{4}{{F}’,leftxright}text{d}x=left. Fleftxright right|_{1}^{4}=Fleft4right-Fleft1right$.

Suy ra $Fleft4right-Fleft1right=frac{1}{2}ln 7$. Do đó  $Fleft4right=Fleft1right+frac{1}{2}ln 7=1+frac{1}{2}ln 7$.

Câu 41.  

           

Cách 1

Gọi hai phương trình đường tròn có bán kính $R=3$ thoả mãn tính chất tâm của đường tròn này thuộc đường tròn kia có dạng:  $leftC1right:{{leftx+frac32right}^{2}}+{{y}^{2}}=9$ ; $leftC2right:{{leftxfrac32right}^{2}}+{{y}^{2}}=9$.

Khi đó thể tích của khối cầu $leftS1right,leftS2right$ lần lượt là thể tích khối tròn xoay khi quay các đường tròn $leftC1right,leftC2right$ quanh trục $Ox$.

Vậy $V=pi intlimits_{frac{-3}{2}}^{0}{left9left(xfrac32right)2righttext{d}x+pi intlimits_{0}^{frac{3}{2}}{left9left(x+frac32right)2righttext{d}x}}=2pi intlimits_{0}^{frac{3}{2}}{left9left(x+frac32right)2righttext{d}x}=frac{45pi }{4}$.

Cách 2: dùngcôngthctínhkhichmcu.

Thể tích phần chung chính là tổng thể tích 2 khối chỏm cầu có bán kính $R=3$, chiều cao $h=frac{R}{2}=frac{3}{2}$. 

Vậy $V=2.pi {{h}^{2}}leftRfrach3right=frac{45pi }{4}$.

Câu 42.   * ${{I}_{1}}=intlimits_{0}^{frac{pi }{4}}{tan x.flefttextcotexts2xrighttext{d}x}=frac{1}{2}intlimits_{0}^{frac{pi }{4}}{frac{flefttextcotexts2xright}{text{co}{{text{s}}^{2}}x}text{.sin2}xtext{d}x}$.

Đặt $text{co}{{text{s}}^{2}}x=t$$Rightarrow sin 2xtext{d}x=-text{d}t$.

Đổi cận

$x$

$0$

$frac{pi }{4}$

$t$

$1$

$frac{1}{2}$

Khi đó ${{I}_{1}}=-frac{1}{2}intlimits_{1}^{frac{1}{2}}{frac{flefttright}{t}}text{d}t$ $Rightarrow intlimits_{frac{1}{2}}^{1}{frac{flefttright}{t}}text{d}t=4$.

* ${{I}_{2}}=intlimits_{text{e}}^{{{text{e}}^{2}}}{frac{flefttextltextn2xright}{xln x}text{d}x}=frac{1}{2}intlimits_{text{e}}^{{{text{e}}^{2}}}{frac{flefttextltextn2xright}{{{ln }^{2}}x}text{.}frac{2ln x}{x}text{d}x}$.

Đặt $text{l}{{text{n}}^{2}}x=t$$Rightarrow frac{text{2}ln x}{x}text{d}x=text{d}t$.

Đổi cận

$x$

$text{e}$

${{text{e}}^{2}}$

$t$

$1$

$4$

Khi đó ${{I}_{2}}=frac{1}{2}intlimits_{1}^{4}{frac{flefttright}{t}}text{d}t$ $Rightarrow intlimits_{1}^{4}{frac{flefttright}{t}}text{d}t=4$.

* Tính $I=intlimits_{frac{1}{4}}^{2}{frac{fleft2xright}{x}text{d}x}$. Đặt $2x=t$$Rightarrow text{d}x=frac{1}{2}dt$.

Đổi cận

$x$

$frac{1}{4}$

$2$

$t$

$frac{1}{2}$

$4$

Khi đó $I=intlimits_{frac{1}{2}}^{4}{frac{flefttright}{t}}text{d}t=intlimits_{frac{1}{2}}^{1}{frac{flefttright}{t}}text{d}t+intlimits_{1}^{4}{frac{flefttright}{t}}text{d}t=4+4=8$.

Câu 43.  

                          

Kẻ $AH$, $AK$ lần lượt vuông góc $B{B}’$, $CC’$ tại $H$, $K$.

Vậy $AH=2a$, $AK=4a$, $widehat{leftleft(ABBAright,leftACCAright right)}=widehat{leftAH,AKright}=60{}^circ $.

Kẻ ${A}’M$, ${A}’N$ lần lượt vuông góc $B{B}’$, $C{C}’$ tại $M$, $N$.

Ta có hai khối chóp $A.BCKH$, ${A}’.{B}'{C}’NM$ là bằng nhau.

Vậy ${{V}_{ABC.A’B’C’}}={{V}_{ABCKH}}+{{V}_{AHKA’B’C’}}={{V}_{A’B’C’NM}}+{{V}_{AHKA’B’C’}}={{V}_{AHK.A’MN}}$.

Mà $AHK.{A}’MN$ là lăng trụ đứng có đường cao chính là cạnh bên $A{A}’=8a$ và có diện tích đáy $S={{S}_{AHK}}=frac{1}{2}AH.AK.sin widehat{leftAH,AKright}=frac{1}{2}.2a.4a.sin 60{}^circ =2{{a}^{2}}sqrt{3}$

$Rightarrow {{V}_{ABC.A’B’C’}}=A{A}’.{{S}_{AHK}}=16{{a}^{3}}sqrt{3}$.

Câu 44.   Đặt $t=sqrt{6-x}$, $lefttge0right$ khi đó ta có hàm số $y=flefttright=frac{left4mrightt+3}{t+m}$.

Ta có ${f}’lefttright=frac{-{{m}^{2}}+4m-3}{{{leftt+mright}^{2}}}$.

m số $y=sqrt{6-x}$ nghịch biến trên khoảng $leftinfty;6right$ nên với $-8<x<5$ thì $1<t<sqrt{14}$.

Hàm số $y=frac{left4mrightsqrt{6-x}+3}{sqrt{6-x}+m}$ đồng biến trên khoảng $left8,;,5right$ khi và chỉ khi hàm số $flefttright=frac{left4mrightt+3}{t+m}$ nghịch biến trên khoảng $left1,;,sqrt14right$ $Leftrightarrow {f}’lefttright<0,,forall ,tin left1,;,sqrt14right$$ Leftrightarrow left{ begin{array}{l}
 – {m^2} + 4m – 3 < 0\
 – m notin left1,;,sqrt14right
end{array} right.$$ Leftrightarrow left{ begin{array}{l}
left[ begin{array}{l}
m < 1\
m > 3
end{array} right.\
left[ begin{array}{l}
m ge  – 1\
m le  – sqrt {14} 
end{array} right.
end{array} right.$$ Leftrightarrow left[ begin{array}{l}
m > 3\
 – 1 le m < 1\
m le  – sqrt {14} 
end{array} right.$

Mà $m$ nguyên thuộc khoảng $left10,;,10right$ nên $min left{ -9;-8;-7;-6;-5;-4;-1;0;4;5;6;7;8;9 right}$.

Vậy có $14$ giá trị nguyên của m thoả mãn bài toán.

Câu 45.   TXĐ: $mathbb{R}$.

Đặt ${{left4+sqrt15right}^{x}}=t$, $leftt>0right$, phương trình đã cho trở thành:

$t+left2m+1right.frac{1}{t}-6=0Leftrightarrow {{t}^{2}}-6t+2m+1=0quad leftright$ .

                Phương trình đã cho có hai nghiệm phân biệt ${{x}_{1}}$, ${{x}_{2}}$ thỏa mãn ${{x}_{1}}-2{{x}_{2}}=0$ khi và chỉ khi  phương trình $leftright$ có hai nghiệm dương phân biệt ${{t}_{1}}$, ${{t}_{2}}$thỏa mãn ${{t}_{1}}=t_{2}^{2}$.

Phương trình $leftright$ có hai nghiệm dương phân biệt $ Leftrightarrow left{ begin{array}{l}
Delta ‘ > 0\
S > 0\
P > 0
end{array} right. Leftrightarrow left{ begin{array}{l}
8 – 2m > 0\
2m + 1 > 0
end{array} right. Leftrightarrow  – frac{1}{2} < m < 4$

Ta có $left{ begin{array}{l}
{t_1} + {t_2} = 6,left1right;\
{t_1}.{t_2} = 2m + 1\
{t_1} = t_2^2quad 
end{array} right.$

Thay ${{t}_{1}}=t_{2}^{2}$ vào $left1right$ ta có $t_2^2 + {t_2} – 6 = 0 Leftrightarrow left[ begin{array}{l}
{t_2} =  – 3quad leftLright\
{t_2} = 2quad ;;leftTMright
end{array} right.$

Thay ${{t}_{2}}=2$ ta có ${{t}_{1}}=4$,$m=frac{7}{2}$ thamãn.

Câu 46.  

 

Ta có: $left| Omega  right|={{9}^{5}}=59049$.

Gọi B là biến cố cần tìm xác suất.

Số cách chọn 3 chữ số phân biệt $a,b,c$ từ  9 chữ số khác 0 là $text{C}_{9}^{3}$.

TH1.  1 chữ số trong 3 chữ số $a,b,c$ được lặp $3$ lần.

Chọn chữ số lặp: có 3 cách, giả sử là a.

Xếp 5 chữ số $a,a,a,b,c$có $frac{5!}{3!}$ cách, (vì cứ 3! hoán vị của các vị trí mà $a,a,a$ chiếm chỗ thì tạo ra cùng một số $n$).

Suy ra trong trường hợp  này có $text{C}_{9}^{3}.3cdot frac{5!}{3!}$ số tự nhiên.

TH2.  2 trong 3 chữ số $a,b,c$, mỗi chữ số được lặp $2$ lần.

Chọn 2 chữ số lặp: có $text{C}_{3}^{2}$ cách, giả sử là a, b.

Xếp 5 chữ số $a,a,b,b,c$ có $frac{5!}{2!2!}$ cách, (vì cứ 2! hoán vị của các vị trí mà $a,a$ chiếm chỗ và 2! hoán vị của các vị trí mà $b,b$ chiếm chỗ thì tạo ra cùng một số $n$).

Suy ra trong trường hợp này có $text{C}_{9}^{3}.3cdot frac{5!}{2!2!}$ số tự nhiên.

Do đó ta có $left| {{Omega }_{B}} right|=text{C}_{9}^{3}.3cdot frac{5!}{3!}+text{C}_{9}^{3}.3cdot frac{5!}{2!2!}=text{12600}$ số.

Kết luận: $PleftBright=frac{left| {{Omega }_{B}} right|}{left| Omega  right|}=frac{text{12600}}{59049}=frac{text{1400}}{6561}$.

Cách 2: Lưu Thêm

Gọi $A$ là tập các số tự nhiên gồm $5$ chữ số mà các chữ số đều khác $0$.

Xét phép thử: “ Chọn ngẫu nhiên 1 số từ $A$” $Rightarrow $ $nleftOmegaright={{9}^{5}}$.

Gọi $B$ là biến cố: “ Số được chọn chỉ có đúng $3$ chữ số khác nhau”.

TH1: Có $1$ chữ số được lặp $3$ lần, $2$ chữ số còn lại khác nhau.

+) Chọn $1$ chữ số khác $0$ có $9$ cách ( gọi là $a$).                                                                                                                                             

+) Xếp 3 chữ số $a$ vào $3$ trong $5$ vị trí có $C_{5}^{3}$ cách.

+) Chọn $2$ chữ số từ  $8$ chữ số còn lại và xếp vào $2$ vị trí còn lại có $A_{8}^{2}$ cách.

$Rightarrow $ Có $9.C_{5}^{3}.A_{8}^{2}=5040$ s.

TH2: Có $2$ trong $5$ chữ số, mỗi chữ số được lặp $2$ lần.

+) Chọn $2$ chữ số từ $9$ chữ số có $C_{9}^{2}$ gilà$a$,$b$.

+) Xếp $4$ chữ số: $a$, $a$, $b$, $b$ vào $4$ trong $5$ vị trí có $C_{5}^{2}.C_{3}^{2}$ cách.

+) Xếp $1$ chữ số còn lại có $7$ cách.

$Rightarrow $ Có $C_{9}^{2}.C_{5}^{2}.C_{3}^{2}.7=7560$ s.

$Rightarrow nleftBright=5040+7560=12600$.

Kết luận: $PleftBright=frac{nleftBright}{nleftOmegaright}=frac{text{12600}}{{{9}^{5}}}=frac{text{1400}}{6561}$.

Câu 47 . 

 

Với $a>0,b>0$, ta có

$P=frac{2b+3a}{sqrt{{{b}^{2}}-ab+5{{a}^{2}}}}+frac{2c+3b}{sqrt{{{c}^{2}}-bc+5{{b}^{2}}}}$$=frac{2.frac{b}{a}+3}{sqrt{{{leftfracbaright}^{2}}-frac{b}{a}+5}}+frac{2.frac{c}{b}+3}{sqrt{{{leftfraccbright}^{2}}-frac{c}{b}+5}}$.

Xét hàm số $fleftxright=frac{2x+3}{sqrt{{{x}^{2}}-x+5}}$ với $x>0$.

Ta có ${f}’leftxright=frac{-8x+23}{2leftx2x+5rightsqrt{{{x}^{2}}-x+5}}$.

${f}’leftxright=0Leftrightarrow -8x+23=0Leftrightarrow x=frac{23}{8}$.

Từ bảng biến thiên ta suy ra $fleftxrightle frac{2sqrt{665}}{19}$ với mọi $x>0$.

Vậy $left{ begin{array}{l}
fleftfracbaright le frac{{2sqrt {665} }}{{19}}\
fleftfraccbright le frac{{2sqrt {665} }}{{19}}
end{array} right.$
, do đó $P=fleftfracbaright+fleftfraccbrightle frac{4sqrt{665}}{19}$

Suy ra $P$ đạt giá trị lớn nhất bằng $frac{4sqrt{665}}{19}$. Dấu bằng xảy ra khi và chỉ khi $left{ begin{array}{l}
frac{b}{a} = frac{c}{b} = frac{{23}}{8}\
abc = 1
end{array} right. Leftrightarrow left{ begin{array}{l}
a = frac{8}{{23}}\
b = 1\
c = frac{{23}}{8}
end{array} right.$

Từ đó ta có ${{a}_{0}}=frac{8}{23};{{b}_{0}}=1;{{c}_{0}}=frac{23}{8}$. Vậy ${{a}_{0}}+{{b}_{0}}+{{c}_{0}}=frac{777}{184}$.

Cách 2.

$P=frac{2b+3a}{sqrt{{{b}^{2}}-ab+5{{a}^{2}}}}+frac{2c+3b}{sqrt{{{c}^{2}}-bc+5{{b}^{2}}}}=frac{2b+3a}{sqrt{{{leftbfraca2right}^{2}}+frac{19}{4}{{a}^{2}}}}+frac{2c+3b}{sqrt{{{leftcfracb2right}^{2}}+frac{19}{4}{{b}^{2}}}}$.

Ta có $2b+3a=2leftbfraca2right+frac{8}{sqrt{19}}frac{sqrt{19}}{2}ale sqrt{{{2}^{2}}+{{leftfrac8sqrt19right}^{2}}}sqrt{{{leftbfraca2right}^{2}}+{{frac{19a}{4}}^{2}}}$ .

Suy ra $frac{2b+3a}{sqrt{{{b}^{2}}-ab+5{{a}^{2}}}}le frac{2sqrt{665}}{19}$ .

Tương tự $frac{2c+3b}{sqrt{{{c}^{2}}-bc+5{{b}^{2}}}}le frac{2sqrt{665}}{19}$.

Khi đó $Ple frac{4sqrt{665}}{19}.$

Vậy$P$ đạt giá trị lớn nhất bằng $frac{4sqrt{665}}{19}.$

Đẳng thức xảy ra khi $left{ begin{array}{l}
frac{8}{{sqrt {19} }}leftbfraca2right = 2.frac{{sqrt {19} a}}{2}\
frac{8}{{sqrt {19} }}leftcfracb2right = 2.frac{{sqrt {19} b}}{2}\
abc = 1
end{array} right. Leftrightarrow left{ begin{array}{l}
23a = 8b\
23b = 8c\
abc = 1
end{array} right. Leftrightarrow left{ begin{array}{l}
a = frac{8}{{23}}\
b = 1\
c = frac{{23}}{8}
end{array} right.$

Từ đó ta có ${{a}_{0}}=frac{8}{23};{{b}_{0}}=1;{{c}_{0}}=frac{23}{8}$. Vậy ${{a}_{0}}+{{b}_{0}}+{{c}_{0}}=frac{777}{184}$.

Câu 48.  

                                         

Gọi R là bán kính của khối cầu. Khi đó thể tích nước tràn ra ngoài là thể tích của một nửa khối cầu nên $frac{1}{2}.frac{4}{3}pi {{R}^{3}}=54sqrt{3}pi Leftrightarrow R=3sqrt{3}$.

Do đó chiều cao của thùng nước là $h=frac{2}{3}.2R=4sqrt{3}$.

Cắt thùng nước bởi thiết diện qua trục ta được hình thang cân $ABCD$ với $AB=3CD$ . Gọi O là giao điểm của $AD$và $BC$ thì tam giác $OAB$cân tại $O$.

Gọi $H$ là trung điểm của đoạn thẳng $AB$ và $I$ là giao điểm của $OH$và $CD$ $to I$ là trung điểm của $DC$nên $DI=frac{1}{3}AH$.

Ta có $frac{OI}{OH}=frac{DI}{AH}=frac{1}{3}$ $to OH=frac{3}{2}HI=6sqrt{3}$

Gọi $K$ là hình chiếu của $H$ trên $OA$ thì $HK=R=3sqrt{3}$ 

Tam giác $OHA$ vuông tại H có đường cao $HK$ nên

$frac{1}{H{{K}^{2}}}=frac{1}{H{{O}^{2}}}+frac{1}{A{{H}^{2}}}to frac{1}{A{{H}^{2}}}=frac{1}{H{{K}^{2}}}-frac{1}{H{{O}^{2}}}=frac{1}{36}$$to AH=6to DI=2$

Thể tích thùng đầy nước là $frac{hpi leftAH2+DI2+AH.DIright}{3}=frac{4sqrt{3}pi left62+22+6.2right}{3}=frac{208sqrt{3}pi }{3}$

Do đó thể tích nước còn lại là$frac{208sqrt{3}pi }{3}-54sqrt{3}pi =frac{46sqrt{3}pi }{3}leftdm3right.

Câu 49.   Điều kiện: $x>0$.

Ta có $5{{log }_{a}}x.{{log }_{b}}x-4{{log }_{a}}x-3{{log }_{b}}x-2019=0$$Leftrightarrow 5frac{ln x}{ln a}.frac{ln x}{ln b}-4frac{ln x}{ln a}-3frac{ln x}{ln b}-2019=0.$

Đặt $t=ln x$. Ta được phương trình: $frac{5{{t}^{2}}}{ln a.ln b}-leftfrac3lna+4lnblna.lnbrightt-2019=0,$ 

Do $a,,,b>1$ $Rightarrow ln a.ln b>0$. Vậy luôn có hai nghiệm phân biệt ${{t}_{1}},,,{{t}_{2}}$. Suy ra phương trình đã cho luôn có hai nghiệm phân biệt ${{x}_{1}},,,{{x}_{2}}$.

Mặt khác ta có: ${{t}_{1}}+{{t}_{2}}=frac{3ln a+4ln b}{5}=frac{3ln a+4ln left2019aright}{5}$.

                        $Rightarrow ln leftx1.x2right=ln {{x}_{1}}+ln {{x}_{2}}={{t}_{1}}+{{t}_{2}}=frac{3ln a+4ln left2019aright}{5}$

Vì $a>1$, $b>1$ và $a+b=2019$ nên $ain left1;2018right$.

Xét hàm số $fu=frac{3ln u+4ln left2019uright}{5}$ trên $left1;2018right$.

Ta có ${f}'u=frac{6057-7u}{5uleft2019uright}$ $Rightarrow {f}'u=0Leftrightarrow u=frac{6057}{7}$

Bảng biến thiên:

Vậy giá trị lớn nhất của $ln leftx1x2right$ bằng $frac{3}{5}ln frac{6057}{7}+frac{4}{5}ln frac{8076}{7}$.

Do đó $m=6075,,,n=8076$ hay $S=m+2n=22209$.

Câu 50.   

Ta có $frac{{{V}_{1}}}{V}$$=frac{{{V}_{S.AMPN}}}{{{V}_{S.ABCD}}}$ $=frac{{{V}_{S.APN}}+{{V}_{S.APM}}}{{{V}_{S.ABCD}}}$ $=frac{{{V}_{S.APN}}}{2{{V}_{S.ACD}}}+frac{{{V}_{S.APM}}}{2{{V}_{S.ABC}}}$$=frac{1}{2}leftfracSPSC.fracSNSD+fracSPSC.fracSMSBright$ $=frac{1}{10}leftfracSNSD+fracSMSBright$. Đặt $a=frac{SM}{SB}$, $b=frac{SN}{SD}$ , $0<a,ble 1$. 

Gọi $O$ là giao điểm hai đường chéo của hình bình hành $ABCD$.

Trong mặt phẳng $leftSACright$, $APcap SO=I$.

Xét tam giác $SOC$ có $frac{PS}{PC}.frac{AC}{AO}.frac{IO}{IS}=1$ $Leftrightarrow frac{IO}{IS}=2$$Rightarrow frac{SI}{SO}=frac{1}{3}$.

Xét tam giác $SBD$ có $frac{{{S}_{SMN}}}{{{S}_{SBD}}}=frac{SM}{SB}.frac{SN}{SD}$$=a.b$.

Mặt khác, $frac{{{S}_{SMN}}}{{{S}_{SBD}}}=frac{{{S}_{SMI}}+{{S}_{SNI}}}{{{S}_{SBD}}}$$=frac{{{S}_{SMI}}}{2{{S}_{SBO}}}+frac{{{S}_{SNI}}}{2{{S}_{SDO}}}$$=frac{1}{2}leftfracSMSB.fracSISO+fracSNSD.fracSISOright$$=frac{1}{6}lefta+bright$

Vậy, $frac{1}{6}lefta+bright=ab$, do $a=frac{1}{6}$ không thoả mãn hệ thức nên $b=frac{a}{6a-1}$, do $0<ble 1$ nên $0<frac{a}{6a-1}le 1$$Leftrightarrow age frac{1}{5}$. Từ đó, $frac{{{V}_{1}}}{V}=frac{1}{10}lefta+bright$$=frac{1}{10}lefta+fraca6a1right$ với $frac{1}{5}le ale 1$. 

Xét hàm số $y=fleftxright=x+frac{x}{6x-1}$ với $xin leftfrac15;1right$. ${y}’=1-frac{1}{{{left6x1right}^{2}}}$, ${y}’=0Leftrightarrow $${{left6x1right}^{2}}=1$$ Leftrightarrow left[ begin{array}{l}
x = 0,leftrmlright\
x = frac{1}{3}
end{array} right.$. Ta có $fleftfrac15right=frac{6}{5}$, $fleftfrac13right=frac{2}{3}$, $fleft1right=frac{6}{5}$. Vậy $underset{xin leftfrac15;1right}{mathop{max }},fleftxright=fleft1right=frac{6}{5}$ .

Từ đó, giá trị lớn nhất của $frac{{{V}_{1}}}{V}$ bằng $frac{3}{25}$ khi $M$ trùng $B$ hoặc $N$ trùng $D$.

 Cách 2: Lưu Thêm

* Đặt $a=frac{SA}{SA}=1$; $b=frac{SB}{SM}$; $c=frac{SC}{SP}=5$; $d=frac{SD}{SN}$.

* Ta có $a+c=b+d$$Leftrightarrow 1+5=b+dLeftrightarrow d=6-b$.

* $frac{{{V}_{S.AMPN}}}{{{V}_{S.ABCD}}}=frac{a+b+c+d}{4abcd}=frac{1+b+5+6-b}{4.1.b.5.left6bright}=frac{3}{5}.frac{1}{-{{b}^{2}}+6b}$.

* Xét $fleftbright=frac{3}{5}.frac{1}{-{{b}^{2}}+6b};,bin left1;5right$ do$b$,$dge1$.

${f}’leftbright=-frac{3}{5}.frac{-2b+6}{{{leftb2+6bright}^{2}}}$; ${f}’leftbright=0Leftrightarrow b=3$.

Bảng biến thiên:


 

Kết luận: Giá trị lớn nhất của $frac{{{V}_{1}}}{V}=frac{3}{25}$.

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *