Bài 1
Cho hai biểu thức $A=dfrac{sqrt{x}+2}{sqrt{x}-5}$ và $B=dfrac{3}{sqrt{x}+5}+dfrac{20-2sqrt{x}}{x-25}$ với $xge 0,$ $xne 25.$
- Tính giá trị của biểu thức A khi $x=9.$
- Chứng minh $B=dfrac{1}{sqrt{x}-5}.$
- Tìm tất cả giá trị của x để $A=B.left| x-4 right|.$
Giải
a) Thay $x=9$
$A=dfrac{sqrt{9}+2}{sqrt{9}-5}=dfrac{3+2}{3-5}=dfrac{-5}{2}.$
Vậy $A=dfrac{-5}{2}$ khi $x=9.$
b) Với $xge 0$ và $xne 25$ ta có:
$begin{array}{l}
B = dfrac{3}{{sqrt x + 5}} + dfrac{{20 – 2sqrt x }}{{x – 25}}\
{rm{ = }}dfrac{3}{{sqrt x + 5}} + dfrac{{20 – 2sqrt x }}{{left
{rm{ = }}dfrac{{3.left
{rm{ = }}dfrac{{3sqrt x – 15 + 20 – 2sqrt x }}{{left
{rm{ = }}dfrac{{sqrt x + 5}}{{left
{rm{ = }}dfrac{1}{{sqrt x – 5}}.
end{array}$
c) Với $xge 0$ và $xne 25$ ta có:
$begin{array}{l}
A = B.left| {x – 4} right|\
Leftrightarrow frac{{sqrt x + 2}}{{sqrt x – 5}} = frac{1}{{sqrt x – 5}}.left| {x – 4} right|\
Leftrightarrow sqrt x + 2 = left| {x – 4} right|
end{array}$
$begin{array}{l}
Leftrightarrow left[ begin{array}{l}
sqrt x + 2 = x – 4\
sqrt x + 2 = 4 – x
end{array} right.\
Leftrightarrow left[ begin{array}{l}
x – sqrt x – 6 = 0{rm{ }}\
x + sqrt x – 2 = 0{rm{ }}
end{array} right.\
Leftrightarrow left[ begin{array}{l}
left
left
end{array} right.\
Leftrightarrow left[ begin{array}{l}
sqrt x – 3 = 0{rm{ }}\
sqrt x – 1 = 0
end{array} right.{rm{
Leftrightarrow left[ begin{array}{l}
x = 9{rm{ ™}}\
x = 1{rm{
end{array} right.
end{array}$
Vậy $xin left{ 1;9 right}$ thì $A=B.left| x-4 right|.$
Bài 2
Giải
Đổi $4h48’=dfrac{24}{5}left
Gọi thời gian vòi I, vòi II chảy một mình đầy bể lần lượt là $x,y$
Khi đó trong 1h vòi I chảy một mình được $dfrac{1}{x}$
Vì cả hai vòi chảy chung vào bể thì sau $4h48’=dfrac{24}{5}left
Trong $1h20’=dfrac{4}{3}left
Trong $30’=dfrac{1}{2}left
Vì lượng nước vòi I chảy một một mình trong 1h20’ bằng lượng nước của vòi II chảy một mình trong 30 phút và thêm $dfrac{1}{8}$ bể nên ta có phương trình $dfrac{4}{3x}-dfrac{1}{2y}=dfrac{1}{8}text{ }left
Từ
frac{1}{x} + frac{1}{y} = frac{5}{{24}}{rm{ }}\
frac{4}{{3x}} – frac{1}{{2y}} = frac{1}{8}
end{array} right.$
Đặt $a=dfrac{1}{x};b=dfrac{1}{y}.$ Khi đó hệ phương trình có dạng:
$begin{array}{l}
{rm{ }}left{ begin{array}{l}
a + b = frac{5}{{24}}\
frac{4}{3}a – frac{1}{2}b = frac{1}{8}
end{array} right.\
Leftrightarrow left{ begin{array}{l}
24a + 24b = 5\
32a – 12b = 3
end{array} right.\
Leftrightarrow left{ begin{array}{l}
24a + 24b = 5\
64a – 24b = 6
end{array} right.\
Leftrightarrow left{ begin{array}{l}
88a = 11\
a + b = frac{5}{{24}}
end{array} right.\
Leftrightarrow left{ begin{array}{l}
a = frac{1}{8}\
b = frac{1}{{12}}
end{array} right.
end{array}$
$ Rightarrow left{ begin{array}{l}
frac{1}{x} = frac{1}{8}\
frac{1}{y} = frac{1}{{12}}
end{array} right. Leftrightarrow left{ begin{array}{l}
x = 8{rm{ }}left
y = 12{rm{ }}left
end{array} right.$
Vậy vòi I, vòi II chảy một mình đầy bể lần lượt là $8left
Bài 3
1) Giải hệ phương trình $left{ begin{array}{l}
2sqrt {2 – y} + sqrt {x + 1} = 4\
sqrt {2 – y} – 3sqrt {x + 1} = – 5
end{array} right.$
Giải
1) ĐK: $left{ begin{array}{l}
x ge – 1\
y le 2
end{array} right.$
Đặt $left{ begin{array}{l}
a = sqrt {2 – y} ge 0\
b = sqrt {x + 1} ge 0
end{array} right.$
Khi đó hệ phương trình có dạng:
$begin{array}{l}
{rm{ }}left{ begin{array}{l}
2a + b = 4\
a – 3b = – 5
end{array} right.\
Leftrightarrow left{ begin{array}{l}
2a + b = 4\
2a – 6b = – 10
end{array} right.\
Leftrightarrow left{ begin{array}{l}
7b = 14\
2a + b = 4
end{array} right.\
Leftrightarrow left{ begin{array}{l}
b = 2{rm{ ™}}\
a = 1{rm{
end{array} right.
end{array}$
$ Rightarrow left{ begin{array}{l}
sqrt {2 – y} = 1\
sqrt {x + 1} = 2
end{array} right. Leftrightarrow left{ begin{array}{l}
2 – y = 1\
x + 1 = 4
end{array} right. Leftrightarrow left{ begin{array}{l}
y = 1{rm{
x = 3{rm{ ™}}
end{array} right.$
Vậy hệ phương trình có một nghiệm duy nhất $left
2) Cho Parabol $
- Chứng tỏ $left
$ luôn cắt $left $ tại hai điểm phân biệt. - Tìm tọa độ các giao điểm $A,B$ của Parabol $left
$ và đường thẳng $left $ khi $m=2.$ Tính diện tích $Delta AOB.$ - Gọi giao điểm của $left
$ và $left $ là $C$ và $D$. Tìm $m$ để độ dài đoạn thẳng $CD$ nhỏ nhất.
Giải
a) Ta có phương trình hoành độ giao điểm của $left
${{x}^{2}}=mx+3Leftrightarrow {{x}^{2}}-mx-3=0$
Vì $a.c=1.left
Do đó phương trình
Vậy $left
b) Với $m=2$ thay vào đường thẳng $left
Khi đó phương trình hoành độ giao điểm của $left
$begin{array}{l}
{rm{ }}{x^2} – 2x – 3 = 0\
Leftrightarrow {x^2} + x – 3x – 3 = 0\
Leftrightarrow xleft
end{array}$
$begin{array}{l}
Leftrightarrow left
Leftrightarrow left[ begin{array}{l}
x + 1 = 0\
x – 3 = 0
end{array} right.\
Leftrightarrow left[ begin{array}{l}
x = – 1\
x = 3{rm{ }}
end{array} right.
end{array}$
Với $x=-1Rightarrow y=1Rightarrow Aleft
Với $x=3Rightarrow y=9Rightarrow Bleft
Gọi $C,D$ lần lượt là hình chiếu của $B,A$ lên $Ox.]
$Rightarrow Cleft
Từ đó, ta có $AD=1;text{ }BC=9;text{ }OD=1;text{ }OC=3;text{ }CD=4$
$Delta OAD$ vuông tại $DRightarrow {{S}_{Delta OAD}}=dfrac{1}{2}.OD.AD=dfrac{1}{2}.1.1=dfrac{1}{2}$
$Delta OBC$ vuông tại $CRightarrow {{S}_{Delta OBC}}=dfrac{1}{2}.OC.BC=dfrac{1}{2}.3.9=dfrac{27}{2}$
Hình thang vuông $ABCDtext{ }left
Vậy ${{S}_{Delta OAB}}={{S}_{ABCD}}-{{S}_{OAD}}-{{S}_{OBC}}=20-dfrac{1}{2}-dfrac{27}{2}=6$
c) Theo câu a, ta có $left
Gọi tọa độ của $C$ và $D$ lần lượt là $left
Ta có $CD=sqrt{{{left
Do $C$ và $D$là giao điểm của $left
${{x}^{2}}=mx+3Leftrightarrow {{x}^{2}}-mx-3=0$
Có $Delta ={{m}^{2}}+12>0,forall m$
Giả sử ${{x}_{1}}<{{x}_{2}}$ thì ${{x}_{1}}=dfrac{m-sqrt{{{m}^{2}}+12}}{2};text{ }{{x}_{2}}=dfrac{m+sqrt{{{m}^{2}}+12}}{2}.$
Khi đó ${{x}_{2}}-{{x}_{1}}=sqrt{{{m}^{2}}+12};text{ }{{text{y}}_{2}}-{{y}_{1}}=mleft
Suy ra $C{{D}^{2}}={{m}^{2}}+12+{{m}^{2}}.left
Do đó $C{{D}_{min }}=2sqrt{3}Leftrightarrow m=0.$
Bài 4
- Chứng minh rằng tứ giác $AMCO$, tứ giác $MFKC$ và tứ giác $MCHE$ nội tiếp.
- Qua $A$ kẻ đường thẳng song song với $MK$ cắt $left
$ tại $I,CI$ cắt $MK$ tại $N.$
Chứng minh $NH=NK.$
- Chứng minh $OE=OF.$
Giải
a) *) C/m tứ giác $AMCO$ nội tiếp.
Vì $MA$ là tiếp tuyến của $left
nên $MAbot AORightarrow widehat{MAO}={{90}^{o}}.$
Vì $MC$ là tiếp tuyến của $left
nên $MCbot CORightarrow widehat{MCO}={{90}^{o}}.$
Xét tứ giác $AMCO$ có $widehat{MAO}+widehat{MCO}={{90}^{o}}+{{90}^{o}}={{180}^{o}}.$
Mà hai góc này ở vị trí đối nhau.
Suy ra tứ giác $AMCO$ nội tiếp đường tròn đường kính $MO.$
*) C/m tứ giác $MFKC$ nội tiếp.
Ta có $widehat{BKC}$ là góc nội tiếp chắn cung $BC$ của $left
$widehat{COB}$ là góc ở tâm chắn cung $BC$ của $left
$Rightarrow widehat{COB}=2text{ }widehat{BKC}text{ }left
Vì $MA,MC$ là hai tiếp tuyến cắt nhau tại $M$của $left
Mà $widehat{AOM}=widehat{BOF}$
$Rightarrow widehat{COM}=widehat{BOF.}$
Vì $Delta MCO$ vuông tại $ORightarrow widehat{CMO}+widehat{COM}={{90}^{o}}Rightarrow 2widehat{CMO}+2widehat{COM}={{180}^{o}}.$
Hay $2widehat{CMO}+widehat{COM}+widehat{BOF}={{180}^{o}}.$
Lại có $widehat{COM}+widehat{BOC}+widehat{BOF}={{180}^{o}}.$
$Rightarrow widehat{BOC}=2text{ }widehat{CMO}text{ }left
Từ
Mà $widehat{BKC}+widehat{CKF}={{180}^{o}}$
Xét tứ giác $MFKC$ có $widehat{CMO}+widehat{CKF}={{180}^{o}}left
Mà hai góc này ở vị trí đối nhau.
$Rightarrow $ Tứ giác $MFKC$ nội tiếp.
*) C/m tứ giác $MCHE$ nội tiếp.
Ta có $widehat{CMO}=widehat{BKC}left
Lại có $widehat{CHB}=widehat{BKC}$
$Rightarrow widehat{CME}=widehat{CHB}.$
Mà $widehat{CHB}+widehat{CHE}={{180}^{o}}$
$Rightarrow widehat{CME}+widehat{CHE}={{180}^{o}}.$
Xét tứ giác $MCHE$ có $widehat{CME}+widehat{CHE}={{180}^{o}}left
Mà hai góc này ở vị trí đối nhau.
$Rightarrow $ Tứ giác $MCHE$ nội tiếp.
b) Vì $AI//MKleft
Mà $widehat{AIC}=dfrac{1}{2}$sđ $oversetfrown{AC}$
Vì $MA,MC$ là hai tiếp tuyến cắt nhau tại $M$của $left
$Rightarrow widehat{MOC}=dfrac{1}{2}widehat{AOC}=dfrac{1}{2}$sđ $oversetfrown{AC}.$ Mà $widehat{HNC}=dfrac{1}{2}$sđ $oversetfrown{AC}$
$Rightarrow widehat{MOC}=widehat{HNC}$
Xét tứ giác $MCNO$ có $widehat{MOC}=widehat{HNC}left
$Rightarrow $ Tứ giác $MCNO$ nội tiếp.
Lại có $widehat{MCO}={{90}^{o}}left
$Rightarrow widehat{MNO}={{90}^{o}}$
hay $ONbot HK$
$Rightarrow NH=NK$
Lưu ý: Có thể hỏi theo hướng khác: Chứng minh rằng $M{{N}^{2}}+O{{N}^{2}}$ không phụ thuộc vào vị trí của cát tuyến $MHK.$
- Vì $ONbot HKleft
Rightarrow widehat{ONM}={{90}^{o}}.$
Xét tứ giác $AMNO$ có $widehat{MAO}+widehat{MNO}={{90}^{o}}+{{90}^{o}}={{180}^{o}}.$
Mà hai góc này ở vị trí đối nhau.
$Rightarrow $ Tứ giác $AMNO$ nội tiếp.
$Rightarrow widehat{AOM}=widehat{ANH}$
Mà $widehat{AOM}=widehat{BOF}$
$Rightarrow widehat{ANH}=widehat{BOF}$
Xét $Delta HNA$ và $Delta BOF$ có:
$widehat{ANH}=widehat{BOF}left
$Rightarrow Delta HNAbacksim Delta BOFleft
Có $widehat{BEO}=widehat{EMH}+widehat{EHM}$
Mà $widehat{EHM}=widehat{BHK}$
$Rightarrow widehat{BEO}=widehat{EMH}+widehat{BHK}$
Có $widehat{OAN}=widehat{EMH}$
$Rightarrow widehat{NAK}=widehat{NAO}+widehat{OAK}=widehat{EMH}+widehat{BHK}$
Từ
Xét $Delta BEO$ và $Delta KAN$ có:
$widehat{BEO}=widehat{NAK}left
$Rightarrow Delta BEObacksim Delta KANleft
Mà $NH=NKleft
Từ
Lưu ý: Ý c ta có thể trình bày theo cách khác mà không cần sử dụng kết quả của ý b như sau
Hướng dẫn:
Gọi $left{ G right}=ACcap OM.$
Ta có $MG.MO=MH.MK
$Rightarrow $Tứ giác $GHKO$ nội tiếp.
Có $widehat{AHB}={{90}^{o}}$
$Rightarrow widehat{AHE}={{90}^{o}}.$
Có $widehat{AHE}=widehat{AGE}={{90}^{o}}.$
$Rightarrow $ Tứ giác $AEHG$ nội tiếp.
Có $widehat{EAH}=widehat{EGH}=widehat{OKH}.$
$Rightarrow widehat{EAO}=widehat{EAH}+widehat{HAO}=widehat{OKH}+widehat{HKB}=widehat{OKB}=widehat{OBK}=widehat{OBF}.$
$Rightarrow Delta AOE=Delta BOFleft
Bài 5
Cho $a,b,c$ dương thỏa mãn $a+b+c=3.$ Tìm GTNN của $A=dfrac{1}{{{a}^{2}}+1}+dfrac{1}{{{b}^{2}}+1}+dfrac{1}{{{c}^{2}}+1}.$
Phân tích:
Do vai trò của $a,b,c$ là bình đẳng nên dự đoán dấu “=” xảy ra khi $a=b=c=1.$
Nếu ta áp dụng Cô si cho từng mẫu của 3 phân thức thì thấy dấu của biểu thức $A$đổi thành “$le $”. Vậy làm thế nào để cho dấu của $A$ “$ge $”???
$Rightarrow $ Cô si ngược dấu.
Giải
Áp dụng BĐT Cô si dạng hai số: $x+yge 2sqrt{x.y}.$ Dấu “=” xảy ra $Leftrightarrow x=y.$
Ta có $dfrac{1}{{{a}^{2}}+1}=dfrac{{{a}^{2}}+1-{{a}^{2}}}{{{a}^{2}}+1}=1-dfrac{{{a}^{2}}}{{{a}^{2}}+1}ge 1-dfrac{{{a}^{2}}}{2a}=1-dfrac{a}{2}$
Tương tự, ta có: $dfrac{1}{{{b}^{2}}+1}ge 1-dfrac{b}{2};text{ }dfrac{1}{{{c}^{2}}+1}ge 1-dfrac{c}{2}$
Cộng theo vế ba BĐT trên ta được:
$Age 3-dfrac{1}{2}left
Dấu “=” xảy ra $ Leftrightarrow left{ begin{array}{l}
{a^2} = 1\
{b^2} = 1\
{c^2} = 1\
a + b + c = 3\
a,b,c > 0
end{array} right. Leftrightarrow a = b = c = 1.$
Vậy ${{A}_{min }}=dfrac{3}{2}Leftrightarrow a=b=c=1.$