SỞ GIÁO DỤC VÀ ĐÀO TẠO |
ĐỀ THI TUYỂN SINH LỚP 10 TRƯỜNG THPT CHUYÊN Năm học: 2016 – 2017 Môn: TOÁN |
Câu 1 (2,0 điểm).
a) Đơn giản biểu thức $sqrt{x+2+2sqrt{x+1}}-sqrt{x+2-2sqrt{x+1}}$ với $x>0.$
b) Cho $a,b,c$ là các số thực thỏa mãn các điều kiện $a+b+c=6$; $dfrac{1}{a+b}+dfrac{1}{b+c}+dfrac{1}{c+a}=dfrac{47}{60}.$
Tính giá trị của biểu thức $dfrac{a}{b+c}+dfrac{b}{c+a}+dfrac{c}{a+b}.$
Câu 2 (2,0 điểm).
a) Giải phương trình $sqrt{2{{x}^{2}}+3x+1}+sqrt{1-3x}=2sqrt{{{x}^{2}}+1}.$
b) Giải hệ phương trình $left{ begin{array}{l}
{x^2} + 3{y^2} – 3x – 1 = 0\
{x^2} – {y^2} – x – 4y + 5 = 0.
end{array} right.$
Câu 3 (3,0 điểm).
Cho tam giác $ABC$ có ba góc nhọn, nội tiếp đường tròn $left
a) Chứng minh $widehat{NKH}=widehat{MKH}.$
b) Đường thẳng $MN$ cắt đường tròn $left
c) Gọi $P$ là trung điểm của $BC,$ diện tích tứ giác $AMHN$ là $S.$ Chứng minh $2.O{{P}^{2}}>S.$
Câu 4 (1,5 điểm).
a) Chứng minh rằng tồn tại vô hạn bộ ba số nguyên $left
b) Tìm tất cả các số nguyên không âm $a,b,c$ thỏa mãn ${{left
Câu 5 (1,5 điểm).
a) Cho $x,y,z$ là các số thực thỏa mãn $left
$dfrac{1}{{{left
b) Trên bảng ban đầu ghi số 2 và số 4. Ta thực hiện cách viết thêm các số lên bảng như sau: nếu trên bảng đã có hai số, giả sử là $a,b,;,,ane b$, ta viết thêm lên bảng số có giá trị là $a+b+ab.$ Hỏi với cách thực hiện như vậy, trên bảng có thể xuất hiện số $2016$ được hay không? Giải thích.