SỞ GIÁO DỤC VÀ ĐÀO TẠO THANH HOÁ |
KỲ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 2018 – 2019 |
ĐỀ CHÍNH THỨC |
Môn thi: Toán Thời gian: 120 phút (không kể thời gian giao đề) Ngày thi: 08/06/2018 Đề thi có: 01 trang gồm 05 câu. |
Câu I: (2,0 điểm)
1. Giải phương trình: ${{x}^{2}}+8x+7=0$. 2. Giải hệ phương trình: (left{ begin{align} & 2x-y=-6 \ & 5x+y=20 \ end{align} right.)
Câu II: (2,0 điểm)$$
Cho biểu thức $A=frac{sqrt{x}+1}{x+4sqrt{x}+4}:left
1. Rút gọn biểu thức $A$.
2. Tìm tất cả các giá trị của $x$ để $Age dfrac{1}{3sqrt{x}}$.
Câu III: (2,0 điểm)
1. Cho đường thẳng $left
2. Cho phương trình ${{x}^{2}}-
$sqrt{x_{1}^{2}+2018}-{{x}_{1}}=sqrt{x_{2}^{2}+2018}+{{x}_{2}}$.
Câu IV: (3,0 điểm)
Cho đường tròn tâm $O,$ đường kính $AB=2R$. Gọi ${{d}_{1}}$ và ${{d}_{2}}$ lần lượt là các tiếp tuyến của đường tròn $
1. Chứng minh $AMEI$ là tứ giác nội tiếp.
2. Chứng minh $IB.NE=3.IE.NB$.
3. Khi điểm $E$ thay đổi, chứng minh tích $AM.BN$ có giá trị không đổi và tìm giá trị nhỏ nhất của diện tích tam giác $MNI$ theo $R$.
Câu V: (1,0 điểm)
Cho $a,b,c$ là các số thực dương thỏa mãn $a+b+c=1$. Chứng minh
$dfrac{1}{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}+dfrac{1}{abc}ge 30.$
———— Hết ————