Loading [MathJax]/extensions/MathMenu.js

Đề 14: Tỉnh Đắk Lắk

SỞ GIÁO DỤC ĐÀO TẠO

TỈNH ĐẮK LẮK

 

ĐỀ CHÍNH THỨC

 

KỲ THI TUYỂN SINH VÀO LỚP 10 THPT 

NĂM HỌC 2017- 2018

Môn thi: TOÁN

Thời gian làm bài: 120 phút không kể thời gian phát đề

 

Câu 1: 1,5đim 

  1. Tìm $x$, biết: $sqrt{1+2sqrt{x}}=3$.
  2.  Giải phương trình: $43{{x}^{2}}-2018x+1975=0$.
  3.  Cho hàm số $y=left54aright{{x}^{2}}$. Tìm $a$ để hàm số nghịch biến với $x<0$và đồng biến với $x>0$.

Câu 2: (2,0 điểm) Cho phương trình: ${{x}^{2}}-2m+1x+{{m}^{2}}+2=0$ 1, m là tham số.

  1. Tìm m để $x=2$ là nghiệm của phương trình 1.
  2. Xác định m để phương trình 1 có hai nghiệm phân biệt ${{x}_{1}},,,{{x}_{2}}$thỏa mãn điều kiện: $x_{1}^{2}+x_{2}^{2}=10.$

Câu 3: (2,0 điểm)

  1. Trong mặt phẳng tọa độ Oxy cho ba đường thẳng có phương trình:
  2. $leftd1right:y=x+2;quad leftd2right:y=-2;quad leftd3right:y=k+1x+k.$
  3. Tìm k để ba đường thẳng trên đồng quy.
  4. Tìm giá trị lớn nhất của biểu thức: $A=leftdfrac11sqrtx+dfracx+2xsqrtx1+dfracsqrtxx+sqrtx+1right:dfrac{sqrt{x}-1}{5}.$

Câu 4: 3,5đim Cho tam giác ABC có ba góc nhọn và $widehat{A}={{45}^{0}}.$ Gọi D, E lần lượt là hình chiếu vuông góc của B, C lên AC, AB; H là giao điểm của BD và CE.

  1.       Chứng minh tứ giác ADHE nội tiếp.
  2.       Chứng minh: BE = EH.
  3.       Tính tỉ số $frac{ED}{BC}.$
  4.       Gọi I là tâm đường tròn ngoại tiếp của tam giác ABC. Chứng minh: $AIbot DE.$

Câu 5: 1,0đim Cho $n$ là  số tự nhiên khác 0. Tìm giá trị nhỏ nhất của 

$Q=sqrt{1+dfrac{1}{{{1}^{2}}}+dfrac{1}{{{2}^{2}}}}+sqrt{1+dfrac{1}{{{2}^{2}}}+dfrac{1}{{{3}^{2}}}}+sqrt{1+dfrac{1}{{{3}^{2}}}+dfrac{1}{{{4}^{2}}}}+…+sqrt{1+dfrac{1}{{{n}^{2}}}+dfrac{1}{{{leftn+1right}^{2}}}}+dfrac{101}{n+1}$

———-Hết———-

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *