Dạng 1: Tìm hàm số có đồ thị cho trước.
– Bước 1: Nhận dạng đồ thị: Đồ thị thuộc dạng bậc 3 hay bậc 4, hệ số
– Bước 2: Tìm điểm giao của đồ thị hàm số với
– Bước 3: Tìm các điểm cực đại, cực tiểu của đồ thị hàm số đã cho.
– Bước 4: Tính đạo hàm các hàm số ở mỗi đáp án và giải phương trình
– Bước 5: Giải phương trình
HS chỉ cần thực hiện từng bước rồi loại bớt đáp án, đến khi chọn được đáp án đúng thì dừng lại, không nhất thiết phải thực hiện hết cả 5 bước nếu đã tìm ra đáp án trước đó để tránh mất thời gian.
Dạng 2: Tìm hàm số có bảng biến thiên cho trước.
Phương pháp:
– Bước 1: Nhận dạng bảng biến thiên: Bảng biến thiên đã cho là của hàm bậc 3 hay bậc 4, hệ số
– Bước 2: Tìm các điểm cực đại, cực tiểu của đồ thị hàm số dựa vào bảng biến thiên.
– Bước 3: Tính đạo hàm các hàm số ở mỗi đáp án và giải phương trình
Dạng 3: Nhận xét các tính chất của hàm số, đồ thị hàm số có bảng biến thiên cho trước.
Phương pháp:
– Bước 1: Quan sát bảng biến thiên, tìm các khoảng đơn điệu, các điểm cực trị của hàm số.
– Bước 2: Nhận dạng bảng biến thiên: Bảng biến thiên đã cho là của hàm bậc 3 hay bậc 4, từ đó tìm được tâm đối xứng, trục đối xứng,…
– Bước 3: Đối chiếu các kết quả thu được ở trên với các đáp án bài cho và xét tính đúng sai của các đáp án.
HS cũng có thể xét tính đúng sai của từng đáp án ngay mà không cần nhận xét tất cả các tính chất của hàm số, đồ thị hàm số đã nêu ở trên để tránh mất nhiều thời gian.
Dạng 4: Tìm điều kiện của các hệ số của hàm đa thức bậc ba có đồ thị cho trước.
Cho hàm số
Phương pháp:
– Bước 1: Xét tính dương, âm của hệ số
– Bước 2: Tìm điều kiện của
+ Nếu giao điểm nằm trên trục hoành thì
+ Nếu giao điểm nằm dưới trục hoành thì
+ Nếu giao điểm trùng với gốc tọa độ
– Bước 3: Tìm điều kiện của
+ Nếu đồ thị hàm số không có cực trị thì phương trình
+ Nếu đồ thị hàm số có hai cực trị thì phương trình
+ Nếu đồ thị hàm số có hai cực trị nằm trái phía với trục tung thì phương trình
+ Nếu đồ thị hàm số có hai cực trị cùng nằm bên trái trục tung thì phương trình
+ Nếu đồ thị hàm số có hai cực trị cùng nằm bên phải trục tung thì phương trình
Dạng 5: Tìm điều kiện của tham số để đồ thị hàm số có điểm uốn thỏa mãn điều kiện cho trước.
Phương pháp:
– Bước 1: Tính
– Bước 2: Giả sử
– Bước 3: Thay tọa độ điểm uốn vào điều kiện đề bài để tìm