1. Tập hợp các số nguyên
a. Định nghĩa
– Tập hợp: $left{ {…; – 3; – 2; – 1;0;1;2;3;…} right}$ gồm các số nguyên âm, số $0$ và các số nguyên dương là tập hợp các số nguyên. Kí hiệu là $Z.$
– Số
b. Trục số
+ Trên trục số: Điểm
+ Điểm biểu diễn số nguyên
c. Số đối
+ Các điểm
+ Số đối của số
e. So sánh hai số nguyên
– So sánh hai số nguyên $a$ và $b:$ $a < b$ khi và chỉ khi điểm $a$ nằm bên trái điểm $b$ trên trục số.
+ Mọi số nguyên dương đều lớn hơn số $0.$
+ Mọi số nguyên âm đều nhỏ hơn số $0.$
+ Mọi số nguyên âm đều nhỏ hơn bất kì số nguyên dương nào.
Nhận xét:
Số nguyên
2. Giá trị tuyệt đối của số nguyên
3. Cộng hai số nguyên cùng dấu
4. Cộng hai số nguyên khác dấu
5. Tính cất của phép cộng các số nguyên
+ Tính chất giao hoán : $a + b = b + a$
+ Tính chất kết hợp : $left
+ Cộng với số $0$ : $a + 0 = 0 + a = a$
+ Cộng với số đối : $a + left
+ Tính chất phân phối : $a.left
6. Phép trừ hai số nguyên
7. Qui tắc dấu ngoặc
a. Qui tắc phá ngoặc
Tổng đại số
Tổng đại số: là một dãy các phép tính cộng, trừ các số nguyên.
Qui tắc hình thành dấu ngoặc
Chú ý: Trong một tổng đại số ta có thể thay đổi vị trí các số hạng kèm theo dấu của chúng.
8. Qui tắc chuyển vế
9. Qui tắc nhân hai số nguyên khác dấu
10. Qui tắc nhân hai số nguyên cùng dấu
Nhận xét: Tích của hai số nguyên âm là một số nguyên dương
11. Tính chất của phép nhân
Giao hoán: $a.b = b.a$
Kết hợp: $left
Nhân với số $1:$ $a.1 = 1.a = a$
Tính chất phân phối của phép nhân đối với phép cộng: $a.left
Tính chất trên cũng đúng đối với phép trừ: $aleft
Chú ý:
+ Nhờ tính chất kết hợp ta có tích của ba, bốn, năm… số nguyên.
+ Khi thực hiện phép nhân nhiều số nguyên, ta có thể dựa vào các tính chất giao hoán và kết hợp để thay đổi vị trí giữa các thừa số, đặt dấu ngoặc để nhóm các thừa số thích hợp.
+ Tích của
12. Bội và ước của một số nguyên
– Cho $a,b in Z$ và $b ne 0.$ Nếu có số nguyên $q$ sao cho $a = bq$ thì ta nói $a$ chia hết cho $b.$ Ta còn nói $a$ là bội của $b$ và $b$ là ước của $a.$
Chú ý:
+ Số $0$ là bội của mọi số nguyên khác $0.$
+ Số $0$ không phải là ước của bất kì số nguyên nào.
+ Các số $1$ và $ – 1$ là ước của mọi số nguyên.
Tính chất:
+ Nếu $a$ chia hết cho $b$ và $b$ chia hết cho $c$ thì $a$ cũng chia hết cho $c.$
+ Nếu $a$ chia hết cho $b$ thì bội của $a$ cũng chia hết cho $b.$
+ Nếu hai số $a,b$ chia hết cho $c$ thì tổng và hiệu của chúng cũng chia hết cho $c.$