1. Vectơ pháp tuyến và véc tơ chỉ phương của đường thẳng
Định nghĩa: Cho đường thẳng \(\Delta \)
- Vectơ \(\overrightarrow n \ne \overrightarrow 0 \) gọi là vectơ pháp tuyến (VTPT) của \(\Delta \) nếu giá của \(\overrightarrow n \) vuông góc với \(\Delta \)
- Vectơ \(\overrightarrow u \ne \overrightarrow 0 \) gọi là vectơ chỉ phương (VTCP) của đường thẳng \(\Delta \) nếu giá của nó song song hoặc trùng với \(\Delta \)
2. Phương trình tổng quát, tham số của đường thẳng
a) Phương trình tổng quát
Cho đường thẳng \(\Delta \) đi qua \({M_0}({x_0};{y_0})\) và có VTPT \(\overrightarrow n = (a;b)\). Khi đó:
Phương trình trên được gọi là phương trình tổng quát của đường thẳng \(\Delta \)
Nhận xét : Nếu \(\Delta \) có phương trình tham số là (1) thì \(A \in \Delta \Leftrightarrow A({x_0} + at;{y_0} + bt)\)
c) Phương trình chính tắc.
Cho đường thẳng \(\Delta \) đi qua \({M_0}({x_0};{y_0})\) và \(\overrightarrow u = (a;b)\) (với \(a \ne 0,\,\,b \ne 0\)) là vectơ chỉ phương thì phương trình \(\dfrac{{x - {x_0}}}{a} = \dfrac{{y - {y_0}}}{b}\) được gọi là phương trình chính tắc của đường thẳng \(\Delta \).
3. Vị trí tương đối của hai đường thẳng
Cho hai đường thẳng \({d_1}:{a_1}x + {b_1}y + {c_1} = 0;\) \({\rm{ }}{d_2}:{a_2}x + {b_2}y + {c_2} = 0\)