PHIẾU HỌC TẬP TOÁN 9 TUẦN 23
Đại số 9 § 1; Hàm số y = ax2
Hình học 9: §2: Liên hệ giữa cung và dây.
Bài 1: Cho hàm số $y=left
- Tìm điều kiện để hàm số đồng biến khi x < 0.
- Tìm điều kiện để hàm số nghịch biến khi x < 0.
- Tính m để đồ thị hàm số đi qua điểm $A
$.
Bài 2: Cho hàm số $y=f
- Tính a.
- Các điểm nào sau đây thuộc
: $B ;,,C $. - Tính $fleft
$ và tính x nếu f = 8.
Bài 3: Cho tam giác ABC cân tại A nội tiếp đường tròn
Bài 4: Cho hình bên, biết AB = CD. Chứng minh rằng:
- MH = MK.
- MB= MD .
- Chứng minh tứ giác ABDC là hình thang cân.
Bài 5:
Cho đường tròn
a) Chứng minh bốn điểm M, N, O, P thẳng hàng.
b) Xác định số đo của cung nhỏ AB để tứ giác AMBO là hình thoi.
– Hết –
PHẦN HƯỚNG DẪN GIẢI
Bài 1 Hàm số $y=left
- Tìm điều kiện để hàm số đồng biến khi x < 0.
* Để hàm số đồng biến khi x < 0
$Leftrightarrow $$1-sqrt{m-1}<0Leftrightarrow sqrt{m-1}>1Leftrightarrow m-1>1Leftrightarrow m>2$
* Vậy để hàm số đồng biến khi x < 0 $Leftrightarrow m>2$
b) Tìm điều kiện để hàm số nghịch biến khi x < 0.
* Để hàm số nghịch biến khi x < 0
$Leftrightarrow $$1-sqrt{m-1}>0Leftrightarrow sqrt{m-1}<1Leftrightarrow m-1<1Leftrightarrow m<2$
* Vậy để hàm số nghịch biến khi x < 0 $Leftrightarrow 1<m<2$
c) Tính m để đồ thị hàm số đi qua điểm $A
* Để đồ thị hàm số đi qua điểm $A
$begin{array}{l}
Leftrightarrow left
Leftrightarrow 1 – sqrt {m – 1} = 1 Leftrightarrow sqrt {m – 1} = 0 Leftrightarrow m – 1 = 0 Leftrightarrow m = 1
end{array}$. KL : vậy m = 1 là giá trị cần tìm.
Bài 2:
a) Đồ thị
b) Thay $Bleft
Vậy B không thuộc
Thay $Cleft
Vậy C thuộc
c) Ta có: $fleft
$f
KL $x=pm 4sqrt{2}$ thì $f
Bài 3:
Kẻ đường cao AH. Ta tính được AH = 32cm. Đặt OH = x. Kẻ $OM bot AC$ .
Ta có: ∆ AMO $#$ ∆AHC
$ Rightarrow dfrac{{AO}}{{AC}} = dfrac{{AM}}{{AH}} Rightarrow dfrac{{32 – x}}{{40}} = dfrac{{20}}{{32}}$ .Từ đó x = 7cm.
Bài 4:
- AB = CD ⇒ OH = OK.
∆OMH và ∆OMK có $widehat {OHM} = widehat {OKM} = {90^0}$ , OM chung, OH = OK
suy ra ∆OMH = ∆ OMK MH = MK.
- AB = CD mà $OH bot AB;OK bot CD$
Suy ra AH = HB = CK = KD. Mặt khác MB = MH – HB; MD = MK – KD. Do đó MB = MD.
- Ta có MA = MH + HA; MC = MK + KC suy ra MA = MC.
∆MAC cân tại M
$widehat {MAC} = widehat {MCA} = dfrac{{{{180}^0} – widehat M}}{2}$
∆MBD cân tại M
$widehat {MBD} = widehat {MDB} = dfrac{{{{180}^0} – widehat M}}{2}$
Từ đó suy ra $widehat {MAC} = widehat {MBD}$ mà $widehat {MAC} = widehat {MCA}$ nên ABDC là hình thang cân.
Bài 5:
Ta có $oversetfrown{MA}=oversetfrown{MB}Rightarrow $ MA = MB
$oversetfrown{NA}=oversetfrown{NB}Rightarrow $ NA = NB . Mặt khác PA = PB; OA = OB, nên bốn điểm N, M, O, P thẳng hàng
b) Tứ giác AMBO là hình thoi
$ Leftrightarrow OA = AM = MB = BO Leftrightarrow $ $Delta AOM$ đều
$ Leftrightarrow widehat {AOM} = {60^0} Leftrightarrow widehat {AOB} = {120^0} Leftrightarrow $ sđ $mathop {AMB}limits^frown $ = ${120^0}$ .
HẾT