Loading [MathJax]/extensions/tex2jax.js

Phiếu bài tập tuần Toán 8 – Tuần 13

PHIẾU HỌC TẬP TOÁN 8 TUẦN 13

Đại số 8 : § 4: Quy đồng mẫu thức của nhiều phân thức

Hình học 8:   Ôn tập chương Tứ giác.

†††††††††

Bài 1:   Quy đồng mẫu thức các phân thức sau:

a) $frac{13z}{63{{x}^{2}}{{y}^{3}}}$  ; $frac{-y}{15x{{z}^{2}}}$;   $frac{2x}{9{{y}^{2}}z}$

b) $frac{x}{x-y}$;$frac{y}{{{leftxyright}^{2}}}$;   $frac{1}{{{leftyxright}^{3}}}$

c) $frac{1}{2x+4}$;   $frac{x}{2x-4}$;   $frac{3}{4-{{x}^{2}}}$

d) $frac{1}{x-2{{x}^{2}}}$; $frac{20}{4{{x}^{3}}-x}$; $frac{7}{2{{x}^{2}}+x}$

e) $frac{x}{{{x}^{3}}+1}$; $frac{x+1}{{{x}^{2}}+x}$;  $frac{x+2}{{{x}^{2}}-x+1}$

f)$frac{1}{{{x}^{2}}+3x+2}$;$frac{1}{{{leftx+1right}^{2}}}$; $frac{1}{{{leftx+2right}^{2}}}$

Bài 2: Tìm x biết:

  1. ${{a}^{2}}x+2x-{{a}^{6}}-8=0$ với a là hằng số
  2. ${{a}^{2}}x+ax-12x=aa26a+9+4{{a}^{2}}-24a+36$ với a là hằng số, $ane 3,ane -4$.

Bài 3: Rút gọn các phân thức sau:

a) $frac{{{x}^{6}}+{{x}^{4}}+{{x}^{2}}+1}{{{x}^{7}}+{{x}^{6}}+{{x}^{5}}+{{x}^{4}}+{{x}^{3}}+{{x}^{2}}+x+1}$

b) $frac{leftx2+1rightleftx8+x4+1right}{leftx2+x+1rightleftx2x+1right}$

Bài 4: Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi H là điểm đối xứng với M qua AB, E là giao điểm của MH và AB. Gọi K là điểm đối xứng với M qua AC, F là giao điểm của MK và AC.

        a) Xác định dạng của tứ giác AEMF, AMBH, AMCK.

        b) Chứng minh rằng H đối xứng với K qua A.

        c) Tam giác vuông ABC có thêm điều kiện gì thì AEMF là hình vuông?

Bài 5:  Cho tam giác nhọn ABC. Gọi H là trực tâm của tam giác, M là trung  điểm của BC. Gọi D là điểm đối xứng của H qua M.

a/ Chứng minh tứ giác BHCD là hình bình hành.

b/ Chứng minh các tam giác ABD, ACD vuông tại B, C.

c/ Gọi I là trung điểm của AD. Chứng minh rằng: IA = IB = IC = ID.

 

– Hết –

 

PHẦN HƯỚNG DẪN GIẢI

Bài 1:  

a) Ta có:

$63{{x}^{2}}{{y}^{3}}={{7.3}^{2}}.{{x}^{2}}{{y}^{3}}$

$15x{{z}^{2}}=3.5.x{{z}^{2}}$

$9{{y}^{2}}z={{3}^{2}}{{y}^{2}}z$

MTC: ${{3}^{2}}.5.7{{x}^{2}}{{y}^{3}}{{z}^{2}}=315{{x}^{2}}{{y}^{3}}{{z}^{2}}$

$frac{13z}{63{{x}^{2}}{{y}^{3}}}=frac{13z.5{{z}^{2}}}{63{{x}^{2}}{{y}^{3}}.5{{z}^{2}}}=frac{65{{z}^{3}}}{315{{x}^{2}}{{y}^{3}}{{z}^{2}}}$

$frac{-y}{15x{{z}^{2}}}=frac{-y.21x{{y}^{3}}}{15x{{z}^{2}}.21x{{y}^{3}}}=frac{-21x{{y}^{4}}}{315{{x}^{2}}{{y}^{3}}{{z}^{2}}}$

$frac{2x}{9{{y}^{2}}z}=frac{2x.35{{x}^{2}}yz}{9{{y}^{2}}z.35{{x}^{2}}yz}=frac{70{{x}^{3}}yz}{315{{x}^{2}}{{y}^{3}}{{z}^{2}}}$

b) Ta có: $frac{1}{{{leftyxright}^{3}}}=frac{-1}{{{xy}^{3}}}$

MTC: ${{xy}^{3}}$

$frac{x}{x-y}=frac{x{{xy}^{2}}}{xy.{{xy}^{2}}}=frac{x{{xy}^{2}}}{{{xy}^{3}}}$

$frac{y}{{{leftxyright}^{2}}}=frac{y.leftxyright}{{{xy}^{2}}.xy}=frac{yxy}{{{xy}^{3}}}$

c) Ta có: $frac{3}{4-{{x}^{2}}}=frac{-3}{{{x}^{2}}-4}$

MTC: $2x24$

$frac{1}{2x+4}=frac{x-2}{2x24}$

$frac{x}{2x-4}=frac{x+2}{2x24}$

$frac{3}{4-{{x}^{2}}}=frac{-6}{2x24}$

d) MTC: $x4x21=xleft2x1rightleft2x+1right$

$frac{20}{4{{x}^{3}}-x}=frac{20}{xleft2x1rightleft2x+1right}$

$frac{1}{x-2{{x}^{2}}}=frac{-1}{2{{x}^{2}}-x}=frac{-2x-1}{x4x2+1}$

$frac{7}{2{{x}^{2}}+x}=frac{72x1}{x4x21}$

e) MTC: $xx3+1$

$frac{x}{{{x}^{3}}+1}=frac{{{x}^{2}}}{xx3+1}$

$frac{x+1}{{{x}^{2}}+x}=frac{x+1}{xx+1}=frac{1}{x}=frac{{{x}^{3}}+1}{xx3+1}$

$frac{x+2}{{{x}^{2}}-x+1}=frac{xx+2x+1}{xx3+1}=frac{{{x}^{3}}+3{{x}^{2}}+2x}{xx3+1}$

f) MTC: ${{x+1}^{2}}{{x+2}^{2}}$

$frac{1}{{{x}^{2}}+3x+2}=frac{{{x}^{2}}+3x+2}{{{x+1}^{2}}{{x+2}^{2}}}$

$frac{1}{{{leftx+1right}^{2}}}=frac{{{x+2}^{2}}}{{{x+1}^{2}}{{x+2}^{2}}}$

$frac{1}{{{leftx+2right}^{2}}}=frac{{{x+1}^{2}}}{{{x+1}^{2}}{{x+2}^{2}}}$

 

Bài 2:

a) ${{a}^{2}}x+2x-{{a}^{6}}-8=0$ với a là hằng số.

$lefta2+2rightx={{a}^{6}}+8$

             $x=frac{{{a}^{6}}+8}{{{a}^{2}}+2}$

             $x=frac{{{lefta2right}^{3}}+{{2}^{3}}}{{{a}^{2}}+2}$

            $,x=frac{lefta2+2rightlefta4+2a2+4right}{{{a}^{2}}+2}$

                        $,x={{a}^{4}}+2{{a}^{2}}+4$

Vậy $,x={{a}^{4}}+2{{a}^{2}}+4$

b)

$begin{array}{l}
lefta2+a12rightx = {a^3} – 6{a^2} + 9a + 4{a^2} – 24a + 36\
lefta2+a12rightx = {a^3} – 2{a^2} – 15a + 36\
quad quad quad quad quad x = frac{{{a^3} – 2{a^2} – 15a + 36}}{{{a^2} + a – 12}}\
quad quad quad quad quad x = frac{{{{lefta3right}^2}lefta+4right}}{{lefta3rightlefta+4right}}\
quad quad quad quad quad x = a – 3
end{array}$

Vậy $x=text{ }a-3$

Bài 3:

$begin{array}{l}
a){rm{ }}frac{{{x^6} + {x^4} + {x^2} + 1}}{{{x^7} + {x^6} + {x^5} + {x^4} + {x^3} + {x^2} + x + 1}}\
 = frac{{{x^6} + {x^4} + {x^2} + 1}}{{xleftx6+x4+x2+1right + {x^6} + {x^4} + {x^2} + 1}}
end{array}$

$b)text{ }frac{leftx2+1rightleftx8+x4+1right}{leftx2+x+1rightleftx2x+1right}$       

$=frac{leftx2+1rightleftx8+x4+1right}{{{x}^{4}}-{{x}^{3}}+{{x}^{2}}+{{x}^{3}}-{{x}^{2}}+x+{{x}^{2}}-x+1}$

$=frac{{{x}^{10}}+{{x}^{8}}+{{x}^{6}}+{{x}^{4}}+{{x}^{2}}+1}{{{x}^{4}}+{{x}^{2}}+1}$

$=frac{leftx6+1rightleftx4+x2+1right}{{{x}^{4}}+{{x}^{2}}+1}={{x}^{6}}+1$

Bài 4:

Lời giải:

 

 

a) Xác định dạng của tứ giác AEMF, AMBH, AMCK.

H là điểm đối xứng với M qua AB$Rightarrow $AB là đường trung trực của HM $Rightarrow AH=AM;BH=BM;widehat{AEM}={{90}^{{}^circ }}$

K là điểm đối xứng với M qua AC $Rightarrow $AC là đường trung trực của KM

$Rightarrow AM=AK;CM=CK;widehat{AFM}={{90}^{{}^circ }}$

Lại có BM = CM  = AM $Rightarrow AH=BH=BM=AM=MC=CK=AK$

Tứ giác AEMF có $widehat{AEM}=widehat{AFM}=widehat{EAF}={{90}^{{}^circ }}$nên tứ giác AEMF là hình chữ nhật

Tứ giác AMBH có $AH=BH=BM=AM$nên tứ giác AMBH là hình thoi

Tứ giác AMCK có $AM=MC=CK=AK$nên tứ giác AMCK là hình thoi

b) Chứng minh rằng H đối xứng với K qua A.

Tứ giác AMBH, AMCK là hình thoi $Rightarrow AHparallel BM;AKparallel MC$mà $Min BCRightarrow $A, H, K thẳng hàng theotiênđƠclit

Lại có AH = AK cmt $Rightarrow $A là trung điểm của HK hay H đối xứng với K qua A.

c) Tam giác vuông ABC có thêm điều kiện gì thì AEMF là hình vuông?

Hình chữ nhật AEMF là hình vuông $Leftrightarrow EM=AELeftrightarrow AB=ACLeftrightarrow Delta ABC$vuông cân tại A.

 

 

 

 

 

Bài 5: Hướng dẫn

 

a. BHCD là hình bình hành:

    M vừa là trung điểm của BC vừa là trung điểm của HD nên BHCD là hình bình hành.

b. Tam giác ABD, ACD vuông tại B, C:

   BD// CH mà CH $bot $ AB $Rightarrow BDbot AB$

   CD// BH mà BH $bot ACRightarrow CDbot AC$     

c. IA = IB = IC = ID     

BI, CI lần lượt là trung tuyến của hai tam giác vuông có chung cạnh huyền AD

$Rightarrow $   IA = IB = IC = ID     

 

– Hết –

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *