Loading [MathJax]/jax/output/HTML-CSS/config.js

Phiếu bài tập tuần Toán 8 – Tuần 12

PHIẾU HỌC TẬP TOÁN 8 TUẦN 12

Đại số 8 : § 2+3: Tính chất cơ bản của phân thức. Rút gọn phân thức

Hình học 8:   § 12: Hình vuông.

†††††††††

Bài 1:   Dùng tính chất cơ bản của phân thức, hãy tìm các đa thức A, B, C, D, trong mỗi đẳng thức sau:

a) $frac{64{{x}^{3}}+1}{16{{x}^{2}}-1}=frac{A}{4x-1}$                                b) $frac{5x-2}{B}=frac{10{{x}^{2}}-29x+10}{10{{x}^{2}}+27x-5}$

c) $frac{C}{3{{x}^{2}}-7x+4}=frac{3-2x}{3x-4}$                                d) $frac{2x-y-1}{4x-2y}=frac{4{{x}^{2}}-2x-{{y}^{2}}-y}{D}$

Bài 2: Rút gọn các phân thức

  1. $frac{35x2y2{{x+y}^{2}}}{77{{yx}^{2}}{{x+y}^{3}}}$
  1. $frac{4{{x}^{2}}{{y}^{2}}+1-4xy}{8{{x}^{3}}{{y}^{3}}-1-6xy2xy1}$
  1. $frac{{{x}^{2}}-xy-xz+yz}{{{x}^{2}}+xy-xz-yz}$
  1. $frac{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}+2ab}{{{a}^{2}}-{{b}^{2}}+{{c}^{2}}+2ac}$
  1. $frac{x2+3x+2x225}{{{x}^{2}}+7x+10}$
  1. $frac{{{x}^{6}}-{{y}^{6}}}{{{x}^{4}}-{{y}^{4}}-{{x}^{3}}y+x{{y}^{3}}}$

Bài 3: Chứng minh các phân thức sau không phụ thuộc vào biến x:

a) $frac{-2{{y}^{2}}-5y+2xy+5x}{{{y}^{3}}+x-y-x{{y}^{2}}}$                          b) $frac{{{x}^{2}}{{y}^{2}}+1+x2y1y}{{{x}^{2}}{{y}^{2}}+1+x2+y1+y}$

Bài 4: Cho đoạn thẳng $AG$ và điểm $D$ nằm giữa hai điểm A và G. Trên cùng nửa mặt phẳng bờ $AG$ vẽ các hình vuông $ABCD,Dtext{EF}G$. Gọi M, N lần lượt là trung điểm của AG, EC. Gọi I, K lần lượt là tâm đối xứng của các hình vuông $ABCD,Dtext{EF}G$.

  1. Chứng minh: $AE=CG$ và $AEbot CG$tại H.
  2. Chứng minh $IMKN$ là hình vuông.
  3. Chứng minh B, H, F thẳng hàng.
  4. Gọi T là giao điểm của BF và EG. Chứng minh rằng độ dài TM không đổi khi D di động trên đoạn AG cố định.

 

 

 

 

– Hết –

 

 

PHẦN HƯỚNG DẪN GIẢI

Bài 1:  

a) Ta có: $frac{64{{x}^{3}}+1}{16{{x}^{2}}-1}=frac{{{4x}^{3}}+{{1}^{3}}}{4x14x+1}=frac{4x+116x24x+1}{4x14x+1}=frac{16x24x+1}{4x1}=frac{A}{left4x1right}$

Vậy A = $16x24x+1$

b) Ta có: $left10x2+27x5right5x2=-50{{x}^{3}}+135{{x}^{2}}-25x+20{{x}^{2}}-54x+10$

$=-50{{x}^{3}}+155{{x}^{2}}-79x+10=-5x10x229x+10=B.10x229x+10$

Vậy B = $-5x$

c) Ta có: $left3x27x+4rightleft32xright=9{{x}^{2}}-21x+12-6{{x}^{3}}+14{{x}^{2}}-8x$

  $ =  – 6{x^3} + 23{x^2} – 29x + 12 = 3x4left2x2+5x3right$=$left3x4right.C$

Vậy C = $-2{{x}^{2}}+5x-3$

d) Ta có: $frac{2x-y-1}{22xy}=frac{leftleft(2xyright)left(2x+yright)left(2x+yright)right}{D}$

                $frac{2x-y-1}{22xy}=frac{2x+y2xy1}{D}$

                 $D=24x2y2$

Bài 2:

a) $frac{35x2y2{{x+y}^{2}}}{77{{yx}^{2}}{{x+y}^{3}}}=frac{5.7xy{{x+y}^{3}}}{7.11{{yx}^{2}}{{x+y}^{3}}}=frac{-5yx}{11{{yx}^{2}}}=frac{-5}{11yx}$

b) $frac{4{{x}^{2}}{{y}^{2}}+1-4xy}{8{{x}^{3}}{{y}^{3}}-1-6xy2xy1}=frac{{{2xy1}^{2}}}{2xy14x2y2+2xy+1-6xy2xy1}$

    $=frac{{{2xy1}^{2}}}{2xy14x2y24xy+1}=frac{1}{2xy-1}$

c) $frac{{{x}^{2}}-xy-xz+yz}{{{x}^{2}}+xy-xz-yz}=frac{xxy-zxy}{xx+y-zx+y}=frac{xzxy}{xzx+y}=frac{x-y}{x+y}$

d) $frac{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}+2ab}{{{a}^{2}}-{{b}^{2}}+{{c}^{2}}+2ac}=frac{{{a+b}^{2}}-{{c}^{2}}}{{{a+c}^{2}}-{{b}^{2}}}=frac{a+b+ca+bc}{a+b+cab+c}=frac{a+b-c}{a-b+c}$

Bài 3:

a) $frac{-2{{y}^{2}}-5y+2xy+5x}{{{y}^{3}}+x-y-x{{y}^{2}}}=frac{2yxy+5xy}{-{{y}^{2}}xy+xy}=frac{xy2y+5}{xy1y2}=frac{2y+5}{1-{{y}^{2}}}$

Vậy phân thức đã cho không phụ thuộc vào biến x.

b) $frac{{{x}^{2}}{{y}^{2}}+1+x2y1y}{{{x}^{2}}{{y}^{2}}+1+x2+y1+y}=frac{{{x}^{2}}{{y}^{2}}+1+{{x}^{2}}-{{x}^{2}}y-y+{{y}^{2}}}{{{x}^{2}}{{y}^{2}}+1+{{x}^{2}}+{{x}^{2}}y+y+y{}^{2}}$

$=frac{{{x}^{2}}y2+1+lefty2+1right-yx2+1}{{{x}^{2}}y2+1+lefty2+1right+yx2+1}$

$=frac{y2+1x2+1-yx2+1}{y2+1x2+1+yx2+1}=frac{x2+1y2y+1}{x2+1y2+y+1}=frac{{{y}^{2}}-y+1}{{{y}^{2}}+y+1}$

Vậy phân thức đã cho không phụ thuộc vào biến x.

Bài 4:

 

Ta có tứ giác $ABCD,D{rm{EF}}G$  là các hình vuôngGT

$ Rightarrow left{ {begin{array}{*{20}{c}}
{AB = BC = CD = AD;widehat A = widehat B = widehat C = widehat D}\
{DE = {rm{EF}} = FG = DG;widehat D = widehat E = widehat F = widehat G}
end{array}} right.$

Xét $Delta ADE$  và $Delta CDG$  có:

$left. begin{array}{l}
AD = CDleftcmtright\
widehat {ADE} = widehat {CDG} = 90^circ \
ED = DGleftcmtright
end{array} right} Rightarrow Delta ADE = Delta CDGleftc.g.cright$

$ Rightarrow AE = CG$ Haicnhtươngng và $widehat {AED} = widehat {CGD}$ Haigóctươngng  hay $widehat {HEC} = widehat {CGD}$

Ta có: $widehat {HCE} = widehat {DCG}$ Haigócđiđnh

Mà $widehat {CGD} + widehat {DCG} = 90^circ $ Haigócphnhau

$ Rightarrow widehat {HCE} + widehat {HEC} = 90^circ $

Xét $Delta HEC$  có: $widehat {HCE} + widehat {HEC} = 90^circ leftcmtright$ $ Rightarrow widehat {EHC} = 90^circ $  hay $AE bot CG = left{ H right}$

 

b)

Xét $Delta AEC$ có:  $text{I}$ là trung điểm của $text{AC},text{ N }$ là trung điểm của $text{EC}$

$Rightarrow $ $text{IN }$ là đường trung bình của $Delta AEC$

$Rightarrow IN//AE;IN=frac{AE}{2}$

Xét $Delta AEG$ có:  K là trung điểm của EG, M là trung điểm của AG

$Rightarrow $KM là đường trung bình của $Delta AEG$ ĐN

$Rightarrow KM//AE;KM=frac{AE}{2}$

Xét tứ giác  MINK có:

$left. begin{array}{l}
IN = KMleft=fracAE2right\
IN//KMleft//AEright
end{array} right} Rightarrow $ Tứ giác MINK là hình bình hànhDHNB

Tương tự ta cũng chứng minh được IM là đường trung bình của  $Delta ACG$

$Rightarrow IM//CG;IM=frac{CG}{2}$ mà $KM=frac{AE}{2}$ và $text{AE }~=text{ CG }leftcmtright$

$Rightarrow IM=KM$ mà tứ giác MINK là hình bình hành

Do đó tứ giác $MINK$ là hình thoi.

Ta có $IM//CGRightarrow widehat{IMA}=widehat{AGC}$Haigócđngv

$KM//AEleftcmtrightRightarrow widehat{KMG}=widehat{EAD}$Haigócđngv

Mà $widehat{DCG}=widehat{EAD}$$DeltaADE=DeltaCDG$

Nên $widehat{DCG}=widehat{KMG}$

Mà $widehat{AGC}+widehat{DCG}=90{}^circ $

$Rightarrow widehat{IMA}+widehat{KMG}=90{}^circ Rightarrow widehat{IMK}=90{}^circ $

Mà tứ giác $MINK$ là hình thoi (cmt)

Vậy tứ giác $MINK$ là hình vuông (đpcm)

C2. Sau khi chứng minh MINK là hình thoi ta có IM // CG, CG $bot $ AE suy ra IM $bot $ AE mà AE // IN suy ra IM $bot $ IN hay $widehat{NIM}={{90}^{0}}$

 

c)

Nối $IH,HK$

Ta có $AEbot CG=left{ H right}leftCMTrightRightarrow widehat{EHG}=widehat{AHC}=90{}^circ $

Xét $Delta EHG$ có: $widehat{EHG}=90{}^circ $ và K là trung điểm của EG Tgiác$DtextEFG$làhìnhvuông

Do đó HK là đường trung tuyến ứng với cạnh huyền EG

$Rightarrow HK=frac{EG}{2}leftTCright$ mà $EG=DF$Tgiác$DtextEFG$làhìnhvuông

$Rightarrow HK=frac{DF}{2}$

Xét $Delta DHF$ có: $HK=frac{DF}{2}leftCMTright$$Rightarrow Delta DHF$ vuông tại D $Rightarrow widehat{DHF}=90{}^circ $

Tương tự ta cũng chứng minh được: $IH=frac{AC}{2}$ mà $AC=BDRightarrow IH=frac{BD}{2}$

$Rightarrow Delta BHD$vuông tại HTC $Rightarrow widehat{BHD}=90{}^circ $

Do đó: $widehat{BHD}+widehat{DHF}=90{}^circ +90{}^circ =180{}^circ $

Vậy B, H, F thẳng hàng.

 

d)

Ta có :

$begin{array}{l}
widehat {BAD} = widehat {FGD} = 90^circ \
 Rightarrow AB bot AG;FG bot AG\
 Rightarrow AB//FG
end{array}$

$Rightarrow $ Tứ giác ABFG là hình thang

Ta có:  T là trung điểm của $text{BF}$ cmt, M là trung điểm của $text{AG}$ (gt)

$Rightarrow TM$ là đường trung bình của hình thang ABFG

$Rightarrow TM=frac{AB+FG}{2}=frac{AD+DG}{2}=frac{AG}{2}$

Mà $text{AG}$ không đổi nên độ dài $text{TM}$ không đổi khi D di động trên đoạn AG cố định.

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *