Lời giải đề tỉnh Hà Nam-trang 1

LỜI GIẢI ĐỀ THI TUYỂN SINH MÔN TOÁN VÀO CHUYÊN 10 TỈNH HÀ NAM

NĂM 2017-2018

Đthichung

Câu 1:          (1,5 điểm).

Rút gọn các biểu thức sau:

  1.          $A=4sqrt{2}-3sqrt{8}+sqrt{18}$.
  2.          $B=leftdfracx2sqrtxx4dfrac2sqrtx+2right:left1dfrac4sqrtx+2right$, vi$xge0$,$xne4$.

Lời giải

  1.          $A=4sqrt{2}-3sqrt{8}+sqrt{18}=4sqrt{2}-3sqrt{{{2}^{2}}.2}+sqrt{{{3}^{2}}.2}=4sqrt{2}-6sqrt{2}+3sqrt{2}=sqrt{2}$.
  2.          Với điều kiện $xge 0$, $xne 4$ biểu thức $B$ trở thành:

 $B=leftfracx2sqrtxx4frac2sqrtx+2right:left1frac4sqrtx+2right$

$,,,,,=leftfracsqrtxleft(sqrtx2right)left(sqrtx2right)left(sqrtx+2right)frac2sqrtx+2right:leftfracsqrtx+24sqrtx+2right,,,,,=leftfracsqrtxsqrtx+2frac2sqrtx+2right:leftfracsqrtx2sqrtx+2right$

$,,,,,,=frac{sqrt{x}-2}{sqrt{x}+2}.frac{sqrt{x}+2}{sqrt{x}-2}=1$.

Câu 2:          2,0đim.

  1.          Giải phương trình $3{x^2} – 2x – 1 = 0$.
  2.          Giải hệ phương trình $left{ begin{array}{l}
    2x + 3y = 13\
    2x – y = 1
    end{array} right.$.

Lời giải

  1. $3{{x}^{2}}-2x-1=0$

$Delta ={{left2right}^{2}}-4.3.left1right=16$.

$Rightarrow sqrt{Delta }=4$.

Vì $Delta >0$ nên phương trình trên có 2 nghiệm phân biệt :

${{x}_{1}}=frac{2+4}{6}=1$; ${{x}_{2}}=dfrac{2-4}{6}=dfrac{-1}{3}$.

Vậy phương trình trên có tập nghiệm $S = left{ {frac{{ – 1}}{3};{mkern 1mu} 1} right}$

2. $left{ begin{array}{l}
2x + 3y = 13\
2x – y = 1
end{array} right. Leftrightarrow left{ begin{array}{l}
4y = 12\
2x – y = 1
end{array} right. Leftrightarrow left{ begin{array}{l}
y = 3\
2x = 4
end{array} right. Leftrightarrow left{ begin{array}{l}
y = 3\
x = 2
end{array} right.$

Vậy hệ phương trình trên có nghiệm: $left2;,3right$.

Câu 3:          Trong mặt phẳng tọa độ $Oxy$, cho parabol $leftPright$ có phương trình $y={{x}^{2}}$ và đường thẳng $leftdright$ có phương trình $y=2leftm+1rightx-{{m}^{2}}$ vi$m$làthams.

  1. Tìm điều kiện của $m$ để đường thẳng $leftdright$ cắt parabol $leftPright$ tại hai điểm phân biệt $A$ và $B$.
  2. Gọi ${{x}_{1}}$, ${{x}_{2}}$ lần lượt là hoành độ của $A$ và $B$. Xác định $m$ để $left2x1+1rightleft2x2+1right=13$.

Lời giải

  1. Phương trình hoành độ giao điểm của hai đồ thị hàm số $y={{x}^{2}}$ và $y=2leftm+1rightx-{{m}^{2}}$ là:

Misplaced &x-{{m}^{2}} \  & Leftrightarrow {{x}^{2}}-2leftm+1rightx+{{m}^{2}}=0quad left1right \ end{align}Ta có: {Delta }’={{leftleft(m+1right)right}^{2}}-{{m}^{2}}=2m+1)

Để đường thẳng $leftdright$ cắt parabol $leftPright$ tại hai điểm phân biệt $A$ và $B$ thì phương trình $left1right$ phải có hai nghiệm phân biệt.

Phương trình $left1right$ có hai nghiệm phân biệt $Leftrightarrow {Delta }’>0$$Leftrightarrow 2m+1>0Leftrightarrow m>-frac{1}{2}$.

Vậy với $m>-frac{1}{2}$ thì đường thẳng $leftdright$ cắt parabol $leftPright$ tại hai điểm phân biệt $A$ và $B$.

  1. Với $m>-frac{1}{2}$ thì phương trình $left1right$ có hai nghiệm phân biệt ${{x}_{1}}$, ${{x}_{2}}$ lần lượt là hoành độ của $A$ và $B$ giaođimcađưngthng$left(dright$ và parabol $leftPright$).

Áp dụng hệ thức Vi – ét với phương trình $left1right$, ta có:(left{ begin{matrix}    {{x}_{1}}+{{x}_{2}}=-frac{b}{a}=2leftm+1right  \    {{x}_{1}}.{{x}_{2}}=frac{c}{a}={{m}^{2}}quad quad quad   \ end{matrix} right.)Khi đó:Misplaced &left2x2+1right=13 \  & Leftrightarrow 4{{x}_{1}}.{{x}_{2}}+2leftx1+x2right+1-13=0 \  & Leftrightarrow 4{{m}^{2}}+2.2leftm+1right-12=0 \  & Leftrightarrow 4{{m}^{2}}+4m-8=0 \  & Leftrightarrow left[ begin{matrix}    m=1  \    m=-2  \ end{matrix} right. \ end{align})Kết hợp điều kiện $m>-frac{1}{2}$, ta thấy $m=1$ thỏa mãn yêu cầu đề bài.

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *