Lời giải: Đề thi thử THPTQG môn Toán chuyên Hùng Vương – Bình Dương năm 2017-2018 trang 1

Đáp án

1-D

2-A

3-C

4-C

5-A

6-B

7-B

8-B

9-C

10-A

11-A

12-B

13-D

14-B

15-C

16-C

17-A

18-D

19-C

20-D

21-C

22-B

23-A

24-D

25-A

26-B

27-C

28-B

29-A

30-D

31-B

32-C

33-A

34-C

35-B

36-B

37-A

38-D

39-

40-A

41-A

42-C

43-D

44-C

45-C

46-D

47-D

48-D

49-B

50-D

 

LỜI GIẢI CHI TIẾT

Câu 1: Đáp án D

Ta có: $begin{array}{l}
C_n^8 = 26C_n^4 Leftrightarrow frac{{n!}}{{8!leftn8right!}} = 26frac{{n!}}{{4!leftn4right}} Leftrightarrow leftn7rightleftn6rightleftn5rightleftn4right = 13.14.15.16\
 Leftrightarrow n – 7 = 13 Leftrightarrow n = 20
end{array}$ 

Số tập con gồm k phần tử của A là: $C_{20}^{k}Rightarrow k=10$ thì $C_{20}^{k}$nhỏ nhất.

Câu 2: Đáp án A

Ta chứng minh được công thức tỷ số thể tích tối với khối  hộp như sau hcsinhcóthtchngminh.

$frac{{{V}_{A’B’C’D’.MNPQ}}}{{{V}_{A”B’C’D’.ABCD}}}=frac{1}{2}leftfracAMAA+fracCPCCright=frac{1}{2}leftfracBNBB+fracDQDDright$

 Khi đó: $frac{1}{3}+frac{1}{2}=frac{2}{3}+frac{DQ}{D’D}Leftrightarrow frac{DQ}{D’D}=frac{1}{6}.$

Câu 3: Đáp án C

Số hạng tổng quát là: ${{u}_{n}}={{u}_{1}}+leftn1rightd=2018+leftn1rightleft5right=-5n+2023<0Leftrightarrow n>404,6Rightarrow $ bắt đầu từ số hạng thứ $405$ thì nhận giá trị âm.

Câu 4: Đáp án C

TXĐ: $leftsqrt2018;sqrt2018rightbackslash left{ 0 right}.$ Ta có:  $underset{xto 0}{mathop{lim ,}},y=underset{xto 0}{mathop{lim }},frac{sqrt{2018-{{x}^{2}}}}{xleftx2018right}=infty Rightarrow x=0$ là TCĐ.

Không tồn tại $underset{xto infty }{mathop{lim }},y$ nên đồ thị hàm số không có tiệm cận ngang.

Câu 5: Đáp án A

Điều kiện: ${x^2} – 3x > 0 Leftrightarrow left[ begin{array}{l}
x > 3\
x < 0
end{array} right..$ 

Ta có: $f’leftxright=frac{2x-3}{{{x}^{2}}-3x}Rightarrow f’leftxright=0Leftrightarrow frac{2x-3}{{{x}^{2}}-3x}=0Leftrightarrow x=frac{3}{2}leftLrightRightarrow S=varnothing .$

Câu 6: Đáp án B

Cường độ sang giảm đi số lần là: $frac{{{I}_{0}}{{e}^{-3mu }}}{{{I}_{0}}{{e}^{-30mu }}}={{e}^{27mu }}sim 2,{{6081.10}^{16}}$ lần.

Câu 7: Đáp án B

Ta có: $f’leftxright=-3{{x}^{2}}+3{{leftx+aright}^{2}}+3{{leftx+bright}^{2}}=3{{x}^{2}}+6lefta+brightx+3{{a}^{2}}+3{{b}^{2}}$

Để hàm số đồng biến trên $leftinfty;+inftyright$ thì $f’leftxrightge 0forall xin leftinfty;+inftyright$

$begin{array}{l}
 Leftrightarrow 3{x^2} + 6lefta+brightx + 3{a^2} + 3{b^2} ge 0forall x in  Leftrightarrow {x^2} + 2lefta+brightx + {a^2} + {b^2} ge 0forall x in \
 Leftrightarrow Delta ‘ = {lefta+bright^2} – lefta2+b2right le 0 Leftrightarrow 2ab le 0 Leftrightarrow ab le 0
end{array}$ 

TH1: $b=0Rightarrow P={{a}^{2}}-4a+2={{lefta2right}^{2}}-2ge -2left1right$

TH2: $a>0,b<0Rightarrow P={{lefta2right}^{2}}+{{b}^{2}}+left4bright-2>-2left2right$

Từ 12 $Rightarrow {{P}_{min }}=-2,khi,a=0$ hoặc $b=0.$

Câu 8: Đáp án B

Đặt $BC=2xRightarrow AM=2qx,,,AB=2{{q}^{2}}x.$

Ta có: $A{{B}^{2}}=A{{M}^{2}}+B{{M}^{2}}Leftrightarrow {{left2q2xright}^{2}}={{left2qxright}^{2}}+{{x}^{2}}Leftrightarrow 4{{q}^{4}}-4{{q}^{2}}-1=0Rightarrow {{q}^{2}}=frac{2+2sqrt{2}}{4}$

$Rightarrow q=frac{sqrt{2+2sqrt{2}}}{2}.$

Câu 9: Đáp án C

Ta có: ${S_n} = left2u1+left(n1right)drightfrac{n}{2} = frac{{d{n^2}}}{2} + leftu1fracd2rightn = 5{n^2} + 3n Rightarrow left{ begin{array}{l}
frac{d}{2} = 5\
{u_1} – frac{d}{2} = 3
end{array} right. Leftrightarrow left{ begin{array}{l}
d = 10\
{u_1} = 8
end{array} right..$
 

Câu 10: Đáp án A

Để con châu chấu đáp xuống các điểm $Mleftx,yright$ có $x+y<2$ thì con châu chấu sẽ nhảy trong khu vực hình thang BEIA

Để $Mleftx,yright$có tọa độ nguyên thì $xin left{ -2;-1;0;1;2 right},yin left{ 0;1;2 right}$

Nếu $xin left{ -2;-1 right}$thì $yin left{ 0;1;2 right}Rightarrow $có $2.3=6$ điểm

Nếu $x=0$ thì $yin left{ 0;1 right}Rightarrow $ có 2 điểm

Nếu $x=1Rightarrow y=0Rightarrow $có 1 điểm

$Rightarrow $ có tất cả $6+2+1=9$ điểm. Để con châu chấu nhảy trong hình chữ nhật mà đáp xuống các điểm có tọa độ nguyên thì $xin left{ -2;-1;0;1;2;3;4 right},yin left{ 0;1;2 right}Rightarrow $Số các điểm $Mleftx,yright$ có tọa độ nguyên là: $7.3=21$ điểm. Xác suất cần tìm là: $P=frac{9}{21}=frac{3}{7}.$

Câu 11: Đáp án A                                    

PTLeftrightarrowleft(frac47right)xleft(frac47right)13x=frac1649Leftrightarrowleft(frac47right)12x=left(frac47right)2Leftrightarrow12x=2Leftrightarrowx=frac12RightarrowS=leftfrac12right

Câu 12: Đáp án B

 

Câu 13: Đáp án D

Ta có:

${{V}_{ABYZ}}={{V}_{A.XYZ}}+{{V}_{B.XYZ}}=frac{1}{3}A,X.{{S}_{XYZ}}+frac{1}{3}BX.{{S}_{XYZ}}=frac{1}{3}{{S}_{XYZ}}leftA,X+XBrightge frac{1}{3}{{S}_{XYZ}}.2sqrt{A,X.XB}$

$=frac{1}{3}{{S}_{XYZ}}.2XFRightarrow {{V}_{ABYZ}}$nhỏ nhất $Leftrightarrow text{AX}=XB.$

Câu 14: Đáp án B

Ta có: ${{left1+xright}^{2018}}=sumlimits_{k=0}^{2018}{C_{2018}^{k}{{x}^{k}}=C_{2018}^{0}+}C_{2018}^{1}x+…+C_{2018}^{2018}{{x}^{2018}}.$

Chọn $x=1Rightarrow {{2}^{2018}}=C_{2018}^{0}+C_{2018}^{1}+…+C_{2018}^{2018}.$

Vì $C_{n}^{k}=C_{n}^{n-k}Rightarrow {{2}^{2018}}=2leftC20181010+C20181011+C20182018right+C_{2018}^{1009}=2S+C_{2018}^{1009}Rightarrow S={{2}^{2017}}+frac{1}{2}C_{2018}^{1009}.$

Câu 15: Đáp án C

Ta có: ${{log }_{25}}56=frac{1}{2}{{log }_{5}}56=frac{1}{2}{{log }_{5}}left23.7right=frac{1}{2}left3.log52+log57right.$

Mà ${{log }_{5}}100=2{{log }_{5}}10=2left1+log52right=bRightarrow {{log }_{5}}2=frac{b}{2}-1$ và $log 7.{{log }_{5}}10={{log }_{5}}7=frac{ab}{2}.$

Vậy ${{log }_{25}}56=frac{1}{2}left3.left(fracb21right)+fracab2right=frac{ab+3b-6}{4}.$

Câu 16: Đáp án C

Cứ 2 đường thẳng loại này cắt 2 đường thẳng loại kia tạo thành 1 hình bình hành =>số hình bình hành là: $C_{2017}^{2}.C_{2018}^{2}.$

Câu 17: Đáp án A

Câu 18: Đáp án D

$f’leftxright=frac{leftlnleft(lnxright)right’}{2sqrt{ln leftlnxright}}=frac{leftlnxright’}{2ln xsqrt{ln leftlnxright}}=frac{1}{2xln xsqrt{ln leftlnxright}}.$

Câu 19: Đáp án C

 $PT Leftrightarrow {4.4^{log x}} – {6^{log x}} – {18.9^{log x}} = 0 Leftrightarrow 4{leftfrac49right^{log x}} – {leftfrac23right^{log x}} – 18 = 0 Leftrightarrow left[ begin{array}{l}
{leftfrac23right^{log x}} = frac{9}{4}\
{leftfrac23right^{log x}} =  – 2
end{array} right.$

$Rightarrow {{leftfrac23right}^{log x}}=frac{9}{4}Rightarrow log x=-2Leftrightarrow x=frac{1}{100}Rightarrow a=frac{1}{100}Rightarrow a$cũng là nghiệm của phương trình ${{leftfrac23right}^{log x}}=frac{9}{4}.$

Câu 20: Đáp án D

Gọi ô chứa hạt thóc thỏa mãn đề bài là ô thứ $nleftninmathbbN,n>1right.$ Khi đó

$1+2+4+…+n>20172018Leftrightarrow frac{1-{{2}^{n}}}{1-2}>20172018Leftrightarrow {{2}^{n}}>20172018Rightarrow n>24,27Rightarrow n=25.$

Câu 21: Đáp án C

Ta có: $T=frac{1}{leftx11rightleftx13right}+frac{1}{leftx21rightleftx23right}+frac{1}{leftx31rightleftx33right}$

$frac{1}{2}leftleft(frac1x13+frac1x23+frac1x33right)left(frac1x11+frac1x21+frac1x31right)right$ vì $frac{1}{leftx1rightleftx3right}=frac{1}{x-3}-frac{1}{x-1}.$

Vì ${{x}_{1}},{{x}_{2}},{{x}_{3}}$ là 3 nghiệm của phương trình $Pleftxright=0Rightarrow Pleftxright=leftxx1rightleftxx2rightleftxx3right.$

Suy ra $P’leftxright=leftxx1rightleftxx2right+leftxx2rightleftxx3right+leftxx3rightleftxx1right$

$Rightarrow frac{P’leftxright}{Pleftxright}=frac{leftxx1rightleftxx2right+leftxx3right+leftxx3rightleftxx1right}{leftxx1rightleftxx2rightleftxx3right}=frac{1}{x-{{x}_{1}}}+frac{1}{x-{{x}_{2}}}+frac{1}{x-{{x}_{3}}},,leftright.$

Thay $x=1,x=3$vào biểu thức , ta được $T=frac{1}{2}leftfracPleft(xright)Pleft(1right)fracPleft(3right)Pleft(3right)right.$

Câu 22: Đáp án B

Ta có đồ thị hàm số $y=left| fleftx2017right+2018 right|$ có dạng như bên:

Dễ thấy đồ thị hàm số có 3 điểm cực trị.

Câu 23: Đáp án A

 

Ta có $y’ = 4{x^3} – 8x = 4xleftx22right Rightarrow y’ = 0 Leftrightarrow left[ begin{array}{l}
x = 0\
x =  pm sqrt 2 
end{array} right..$
 

Suy ra hàm số có 3 cực trị.

Câu 24: Đáp án D

 

Câu 25: Đáp án A

Ta có fleft(xright)+fleft(1xright)=frac12018x+sqrt2018+frac120181x+sqrt2018=frac1sqrt2018.

Suy ra $S=sqrt{2018}left2018frac1sqrt2018right=2018.$

Câu 26: Đáp án B

Phương trình $fleftxright=fleftmright$ có ba nghiệm phân biệt thuộc đoạn $left1;8rightLeftrightarrow fleftmrightin left2;4rightLeftrightarrow min left1;1rightcup left3;4rightcup left5;8right$ Davàobngbiếnthiênđsuyracácgiátrcamđ$fleft(mrightin left2;4right$).

Câu 27: Đáp án C

Ta có $f’leftxright = 3{x^2} – 3 = 3leftx1rightleftx+1right Rightarrow y’ > 0 Leftrightarrow left[ begin{array}{l}
x > 1\
x <  – 1
end{array} right..$
 

Suy ra hàm số đồng biến trên các khoảng $leftinfty;1right$ và $left1;+inftyright.$

Câu 28: Đáp án B

PT hoành độ giao điểm là $4x – 1 = {x^3} – 3{x^2} – 1 Leftrightarrow xleftx23x4right = 0 Leftrightarrow left[ begin{array}{l}
x = 0\
x =  – 1\
x = 4
end{array} right..$
 

Suy ra hai đồ thị có 3 giao điểm.

Câu 29: Đáp án A

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *