Loading [MathJax]/jax/output/HTML-CSS/config.js

Lời giải đề 8 : Lời giải đề thi thư vào 10 trường THCS Quang Trung lần 2 năm 2017-2018

Lời giải đề thi thử vào lớp 10 trường THCS Quang Trung lần 2 năm 2017-2018

Bài 1:

a) Tính giá trị của biểu thức $A = dfrac{{sqrt x  – 1}}{{sqrt x  + 1}}$ với $x = 3 – 2sqrt 2 $

$begin{array}{l}
x = 3 – 2sqrt 2  = {leftsqrt2right^2} – 2sqrt 2  + {1^2} = {leftsqrt21right^2}\
 Rightarrow sqrt x  = sqrt {{{leftsqrt21right}^2}}  = sqrt 2  – 1
end{array}$

ĐKXĐ: $x ge 0;begin{array}{*{20}{c}}
{}
end{array}x ne 25$

Thay $x={{leftsqrt21right}^{2}}$TMĐK vào biểu thức $A$ có:

Vậy $x=3-2sqrt{2}$ thì $A=1-sqrt{2}$

b) Rút gọn biểu thức

$begin{array}{l}
B = leftdfrac2sqrtx+5+dfracsqrtx1525xright:dfrac{{sqrt x  + 1}}{{sqrt x  – 5}}begin{array}{*{20}{c}}
{}&{}&{DK:x ge 0;x ne 25}
end{array}\
B = leftdfrac2left(sqrtx5right)left(sqrtx+5right)left(sqrtx5right)dfracsqrtx15left(sqrtx+5right)left(sqrtx5right)right.dfrac{{sqrt x  – 5}}{{sqrt x  + 1}}
end{array}$

$B = dfrac{{2leftsqrtx5right – sqrt x  + 15}}{{leftsqrtx+5rightleftsqrtx5right}}.dfrac{{sqrt x  – 5}}{{sqrt x  + 1}}$

$begin{array}{l}
B = dfrac{{2sqrt x  – 10 – sqrt x  + 15}}{{sqrt x  + 5}}.dfrac{1}{{sqrt x  + 1}}\
B = dfrac{{sqrt x  + 5}}{{sqrt x  + 5}}.dfrac{1}{{sqrt x  + 1}}\
B = dfrac{1}{{sqrt x  + 1}}
end{array}$

c) Với $P=A+B$. Tìm x để $P$ nhận giá trị nguyên

$P = A + B = dfrac{{sqrt x  – 1}}{{sqrt x  + 1}} + dfrac{1}{{sqrt x  + 1}} = dfrac{{sqrt x }}{{sqrt x  + 1}}$

Vì $xge 0Rightarrow sqrt{x}ge 0forall xin $ĐKXĐ $Rightarrow sqrt{x}+1>0forall xin $ĐKXĐ

$begin{array}{l}
 Rightarrow P ge 0\
 Rightarrow 0 le P < 1
end{array}$

$ Rightarrow P in Z Leftrightarrow dfrac{{sqrt x }}{{sqrt x  + 1}} = 0$

$Rightarrow sqrt{x}=0$

$Leftrightarrow x=0$ TMĐK

Vậy x = 0 thì $A+Bin Z$

Bài 2:

Gọi năng suất dự kiến của người công nhân là $x$ snphm/gi,$xinN$

Thời gian người công nhân hoàn thành công việc theo dự kiến là $dfrac{120}{x}$gi

Số sản phẩm $2$ giờ đều người công nhân làm với năng suất dự kiến là: $2x$ snphm

Số sản phẩm còn lại là $120-2x$ snphm

Năng suất làm việc của người công nhân khi làm nốt số sản phẩm còn lại là: $x+3$ snphm/gi

Thời gian hoàn thành công việc còn lại là: $dfrac{120-2x}{x+3}$gi

Thời gian hoàn thành công việc trước dự định $1$ giờ $36$ phút  = $dfrac{8}{5}$ giờ nên ta có phương trình:

$dfrac{{120}}{x} – left2+dfrac1202xx+3right = dfrac{8}{3}$

$begin{array}{l}
 Leftrightarrow dfrac{{120}}{x} – dfrac{{120 – 2x}}{{x + 3}} = dfrac{8}{3} + 2\
 Leftrightarrow 120x+31202xx = dfrac{{18}}{5}x+3x\
 Leftrightarrow 600x + 1800 – 600x + 10{x^2} = 18{x^2} + 54x\
 Leftrightarrow 8{x^2} + 54x – 1800 = 0\
 Leftrightarrow 4{x^2} + 27x – 900 = 0\
Delta  = {27^2} – 4900.4 = 15129 > 0
end{array}$

Phương trình có hai nghiệm phương trình:

$ Rightarrow sqrt Delta   = sqrt {15129}  = 123$

${x_1} = dfrac{{ – 27 – 123}}{{2.4}} = dfrac{{ – 150}}{8} = dfrac{{ – 75}}{4}$Loi

${x_2} = dfrac{{ – 27 + 123}}{{2.4}} = dfrac{{96}}{8} = 12$TMĐK

Vậy năng suất dự định của người công nhân là 12 sản phẩm/giờ.

Bài 3:

a) $left{ begin{array}{l}
mx + y = 2begin{array}{*{20}{c}}
{}&{}&{left1right}
end{array}\
4x + my = 4begin{array}{*{20}{c}}
{}&{}&{left2right}
end{array}
end{array} right.$

Từ $left1right Rightarrow y = 2 – mxbegin{array}{*{20}{c}}
{}&{}
end{array}left3right$

Thay 3 vào $left2right Rightarrow 4x + mleft2mxright = 4$

$begin{array}{l}
 Leftrightarrow 4x + 2m – {m^2}x = 4\
 Leftrightarrow left4m2rightx = 4 – 2m
end{array}$

Khi $mne pm 2$ $Rightarrow $ Hệ phương trình có nghiệm duy nhất $leftx;yright=leftdfrac2m+2;dfrac4m+2right$

$Rightarrow $ Hệ phương trình có nghiệm duy nhất $leftx,yright$

Mà $x > 0,y > 0$ $ Leftrightarrow left{ begin{array}{l}
m >  – 2\
m ne 2
end{array} right.$

b) Phương trình hoành độ của $leftdright$ và $leftPright$ là:

${{x}^{2}}-leftm1rightx-leftm2+1right=0$

Ta có $Delta  = {leftm2+1right^2} + 4leftm2+1right > 0begin{array}{*{20}{c}}
{}&{}
end{array}forall m$

$Rightarrow $ phương trình $left1right$ luôn có $2$nghiệm phân biệt

$Rightarrow {{x}_{1}}.{{x}_{2}}=-leftm2+1right<0$

Theo Viet ta có: $left{ begin{array}{l}
{x_1} + {x_2} = m – 1\
{x_1}.{x_2} =  – {m^2} – 1
end{array} right.$

Theo đề bài $left| {{x_1}} right| + left| {{x_2}} right| = 2sqrt 2 $

$begin{array}{l}
 Leftrightarrow {leftx1+x2right^2} – 2{x_1}.{x_2} + 2left| {{x_1}.{x_2}} right| = 8\
 Rightarrow {m_1} = 1;{m_2} = dfrac{{ – 3}}{5}
end{array}$

Bài 4:

a) Chứng minh tứ giác : $AMHC$ và $AMBK$ nội tiếp

+) Xét $leftOright$có: $widehat{CHB}={{90}^{0}}$gócnitiếpchnnađưngtròn $Rightarrow widehat{CHM}=90{}^circ $.

Xét tứ giác$AMHC$ có:  $widehat{CHM}+widehat{CAM}=90{}^circ +90{}^circ =180{}^circ $mà hai góc ở vị trí đối nhau

⇒ tứ giác$AMHC$ nội tiếp.

+) Xét $leftOright$có: $widehat{CKB}={{90}^{0}}$gócnitiếpchnnađưngtròn $Rightarrow widehat{MKB}=90{}^circ $.

Xét tứ giác$AMBK$ có:

$widehat{MKB}=widehat{MAB}=90{}^circ $mà hai đỉnh A và K liền kề cùng nhìn đoạn MB

⇒ tứ giác$AMBK$ nội tiếp.

b) Chứng minh : $BH.BM$ có giá trị không phụ thuộc vào vị trí của điểm $M$.

Xét $leftMACHright$có: $widehat{CAH}=widehat{CMH}$ haigócnitiếpcùngchn$oversetfrownCH$$Rightarrow widehat{BAH}=widehat{CMB},,$

Xét $Delta ABH$ và $Delta MBC$ có: $widehat{BAH}=widehat{CMB}$; $widehat{B}$ chung.

$Rightarrow Delta ABHsim Delta MBC,g.gRightarrow dfrac{BH}{BC}=dfrac{AB}{MB}Rightarrow BH.BM=AB.BC$

Vì$A,,B,,C$cố định $Rightarrow AB,,,AC$không đổi $Rightarrow BH.BM$ không đổi

$Rightarrow BH.BM$ không phụ thuộc vào vị trí của điểm M.

c) Chứng minh: $KN$ song song với một đường thẳng cố định khi $M$ di chuyển trên $d$.

Xét $leftOright$có: $widehat{HNK}=widehat{HBK}$ haigócnitiếpcùngchn$oversetfrownHK$                  $1$

$Rightarrow widehat{HBK}=widehat{HCM},,$cùngph$widehatHMC,$hoccùngbù$widehatHCK,,,$                     $2$

Xét $leftMACHright$có: $widehat{HCM}=widehat{HAM}$ haigócnitiếpcùngchn$oversetfrownMH,,$       $3$

Từ $1,,$$2,$$3$$Rightarrow widehat{HNK}=widehat{HAM},,$

Hay  $widehat{ANK}=widehat{NAM},$ mà hai góc này ở vị trí so le trong

$Rightarrow KN//d$

d) Chứng minh trọng tâm $G$ của $Delta ABH$chạy trên một đường tròn cố định khi $M$ di chuyển trên $d$.

Gọi $O$ là trung điểm $BC$

$HG$cắt $BC$tại $E$; $GI//OH,,leftI,,in,,BCright$

+) $IG=dfrac{1}{3}OH=dfrac{1}{3}OB$ không đổi mà I cố định $G,,in ,,leftI,,;,dfrac13OBright$

Bài 5:

Ta có: $left2arightleft2brightleft2cright ge ,,0$

Chứng minh: $ab + bc + ca ge ,2 Rightarrow {a^2} + {b^2} + {c^2} le ,5$

$ Rightarrow {A_{max }} = 5 Leftrightarrow abc = 0,$ hay $,lefta,b,cright$ sẽ là hoán vị của bộ 3 số $left0;1;2right$.

 

NHÓM GIẢI ĐỀ THI THỬ TOÁN 9 LÊN 10 HÀ NỘI

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *