Câu I.1: PT ${{x}^{2}}+8x+7=0$ có $a-b+c=1-8+7=0$nên có hai nghiệm $x=-1$; $x=-7$.
Câu I.2: (left{ begin{align} & 2x-y=-6 \ & 5x+y=20 \ end{align} right.Leftrightarrow )(left{ begin{align} & 7x=14 \ & 5x+y=20 \ end{align} right.)(Leftrightarrow left{ begin{align} & x=2 \ & 5x+y=20 \ end{align} right.)(Leftrightarrow left{ begin{align} & x=2 \ & 10+y=20 \ end{align} right.)(Leftrightarrow left{ begin{align} & x=2 \ & y=10 \ end{align} right.)
Câu II.1: Ta có: $A=dfrac{sqrt{x}+1}{x+4sqrt{x}+4}:left
$=dfrac{sqrt{x}+1}{{{
Câu II.2: Với $x>0$ ta có $A=dfrac{1}{sqrt{x}
Khi đó $Age frac{1}{3sqrt{x}}Leftrightarrow dfrac{1}{sqrt{x}left
Suy ra: $0<xle 1$.Câu III.1: Do $left
$-1=2.1+bLeftrightarrow b=-3$
Vậy $a=2$, $b=-3$.
Câu III.2: Điều kiện có nghiệm: $Delta ={{
Ta có: $sqrt{x_{1}^{2}+2018}-{{x}_{1}}=sqrt{x_{2}^{2}+2018}+{{x}_{2}}$ $Leftrightarrow sqrt{x_{1}^{2}+2018}-sqrt{x_{2}^{2}+2018}={{x}_{2}}+{{x}_{1}}$
$Leftrightarrow dfrac{x_{1}^{2}-x_{2}^{2}}{sqrt{x_{1}^{2}+2018}+sqrt{x_{2}^{2}+2018}}={{x}_{2}}+{{x}_{1}}$
$Leftrightarrow $
Theo định lí Viet ta có: ${{x}_{1}}+{{x}_{2}}=m-2$. Khi đó:
Do $sqrt{x_{1}^{2}+2018}>left| {{x}_{1}} right|$; $sqrt{x_{2}^{2}+2018}>left| {{x}_{2}} right|$ suy ra $sqrt{x_{1}^{2}+2018}+sqrt{x_{2}^{2}+2018}>left| {{x}_{1}} right|+left| {{x}_{2}} right|ge {{x}_{1}}-{{x}_{2}}$ nên
Vậy $m=2$.