TRƯỜNG THCS GIẢNG VÕ LỚP 9A10 |
ĐÈ KHẢO SÁT CHẤT LƯỢNG LỚP 9 NĂM HỌC 2017-2018 MÔN TOÁN Thời gian làm bài 120 phút |
Bài 1:
Cho biểu thức $A = dfrac{{sqrt x }}{{1 + sqrt x }}$ và $B = dfrac{{sqrt x – 1}}{{sqrt x – 2}} + dfrac{{sqrt x + 2}}{{3 – sqrt x }} – dfrac{{10 – 5sqrt x }}{{x – 5sqrt x + 6}}$
a) Tính giá trị của biểu thức A khi $x=3-2sqrt{2}$
b) Chứng minh : $B = dfrac{1}{{sqrt x – 2}}$
c) Tính giá trị nhỏ nhất của biểu thức $P=A:B$
Bài 2:
Giải bài toán sau bằng cách lập phương trình :
Một người đi xe đạp từ A đến B cách nhau 60km . Sau đó 1 giờ người khác đi xe máy từ A đến B và đến sớm hơn người đi xe đạp 1 giờ 40 phút. Tính vận tốc của người đi xe đạp .
Bài 3:
1) Giải phương trình $x-4-sqrt{x-2}=0$
2) Cho parabol
a) Chứng minh đường thẳng
b) Xác định vị trí của m để
Bài 4:
Cho tam giác ABC nội tiếp đường tròn tâm
a) Chứng minh tứ giác CEDM nội tiếp đường tròn và ba điểm E,M,N thẳng hàng.
b) Cho đoạn thẳng CN cắt đường tròn
c) Khi M di động trên cạnh BC . CMR : BD.BE=BN.AB . Từ đó suy ra BD.BE+AM.AD có giá trị không đổi.
d) Giả sử $widehat{ABC}={{30}^{0}}$ . Tìm vị trí điểm M trên BC để CN là tiếp tuyến của đường tròn tâm
Bài 5:
Tìm GTNN của biểu thức sau:
$P = x + sqrt {{x^2} + dfrac{1}{x}} ,,,