Các định lí về hình học phẳng tập I - Bồi dưỡng học sinh giỏi toán cấp 2
Mô tả
I.31)Định lí Viviani
I.32)Công thức Lagrange mở rộng
I.33) Đường thẳng Simson
I.34)Đường thẳng Steiner
I.35) Điểm Anti-Steiner (Định lí Collings)
I.36)Định lí Napoleon
I.37)Định lí Morley
I.38)Định lí con bướm với đường tròn
I.39)Định lí con bướm với cặp đường thẳng
I.40)Điểm Blaikie
I.41)Định lí chùm đường thẳng đồng quy
I.42)Đường tròn Apollonius
I.43)Định lí Blanchet
I.44)Định lí Blanchet mở rộng
I.45) Định lí Jacobi
I.46) Định lí Kiepert
I.47)Định lí Kariya
I.48)Cực trực giao
I.49)Khái niệm tam giác hình chiếu ,công thức Euler về diện tích tam giác hình chiếu
I.50)Khái niệm hai điểm đẳng giác
I.51)Khái niệm tứ giác toàn phần.
I.52)Đường thẳng Droz-Farny
I.53) Đường tròn Droz-Farny
I.54)Định lí Van Aubel về tứ giác và các hình vuông dựng trên cạnh
I.55)Hệ thức Van Aubel
I.56)Định lí Pithot
I.57)Định lí Johnson
I.58) Định lí Eyeball
I.59) Bổ đề Haruki
I.60)Bài toán
I.61)Định lí Paul Yiu về đường tròn bàng tiếp.
I.62)Định lí Maxwell
I.63)Định lí Brahmagupta về tứ giác nội tiếp có hai đường chéo vuông góc.
I.64)Định lí Schooten
I.65)Định lí Bottema
I.66)Định lí Pompeiu
I.67)Định lí Zaslavsky
I.68)Định lí Archimedes
I.69) Định lí Urquhart
I.70)Định lí Mairon Walters
I.71)Định lí Poncelet về bán kính đường tròn nội tiếp,bàng tiếp trong tam giác vuông.
I.72)Định lí Hansen
I.73)Định lí Steinbart suy rộng
I.74)Định lí Monge & d'Alembert I
I.75)Định lí Monge & d'Alembert II
I.76)Định lí Steiner về bán kính các đường tròn.
I.77)Định lí Bellavitis
I.78)Định lí Feuer bach-Luchterhand:
II/Một số điểm và đường đặc biệt được xác định duy nhất với tam giác và tứ giác,tứ điểm:
Ở đây nếu không giải thích gì thêm thì yếu tố được hiểu là trong tam giác.
II.1) Đường thẳng Euler của tam giác
II.2)Đường tròn và tâm Euler
II.3)Đường đối trung, điểm Lemoine
II.4)Điểm Gergone,điểm Nobb, đường thẳng Gergone
II.5)Điểm Nagel
II.6)Điểm Brocard
II.7)Điểm Schiffler
II.8)Điểm Feuerbach
II.9)Điểm Kosnita
II.10)Điểm Musselman,định lí Paul Yiu về điểm Musselman
II.11)Khái niệm vòng cực của tam giác.
II.12)Điểm Gibert
II.13)Trục Lemoine
II.14)Tâm Morley
II.15) Tâm Spieker và đường thẳng Nagel
II.16)Hai điểm Fermat
II.17)Điểm Parry reflection.
II.18)Đường tròn Taylor ,tâm Taylor
II.19)Điểm Bevan
II.20)Điểm Vecten
II.21)Điểm Mittenpunkt
II.22)Điểm Napoleon
II.23)Đường tròn Adam
II.24)Tam giác Fuhrmann ,đường tròn Fuhrmann
II.25)Hình luc giác và đường tròn Lemoine thứ nhất
II.26)Hình lục giác và đường tròn Lemoine thứ hai
II.27)Điểm Euler của Tứ giác nội tiếp
II.28)Đường thẳng Steiner của tứ giác toàn phần
II.29)Đường thẳng Gauss của tứ giác toàn phần.
II.30) Điểm Miquel của tứ giác toàn phần
II.31)Đường tròn Miquel của tứ giác toàn phần
II.32)Hình bình hành Varignon của tứ giác .
II.33)Điểm Poncelet của tứ giác.
III/Một số mảng kiến thức quan trọng.
III.1)Tỉ số kép, phép chiếu xuyên tâm
III.2)Hàng điểm điều hòa và một số hệ thức liên quan ,
III.3)Chùm điều hòa, tứ giác điều hòa
III.4)Góc giữa đường thẳng và đường tròn, giữa hai đường tròn, đường tròn trực giao
III.5) Cực và đối cực
IV/Một số định lí không chứng minh
Ở đây sẽ giới thiệu một số định lí rất hay và dễ hiểu ( nhưng cách chứng minh mà mình biết là phức tạp ) tuy nhiên rất vui nếu ai đó sẽ giới thiệu những chứng minh của nó:hornytoro:
IV.1) Định lí Aiyer
IV.2)Đường tròn Lester
IV.3)Tâm Eppstein
IV.4)Đường tròn Neuberg-Mineur của tứ giác
IV.5)Paracevian perspector