Loading [MathJax]/extensions/tex2jax.js

Bài 2: PHÉP CỘNG TRỪ NHÂN CHIA SỐ PHỨC

2. PHÉP CỘNG TRỪ NHÂN CHIA SỐ PHỨC

2.1. Phép cộng và phép trừ số phức

Cho hai số phức ${z_1} = a + bia,binR$ và ${z_2} = c + dic,dinR$. Khi đó:

      ${z_1} pm {z_2} = a+c pm b+di$

    • Số đối của số phức z=a + bi là -z = -a – bi.
    • Tổng của một số phức với số phức liên hợp của nó bằng hai lần phần thực của số thực đó: $z = a + bi,z + overline z  = 2{rm{a}}$.

2.2. Phép nhân số phức

    • Cho hai số phức ${z_1} = a + bia,binR$ và ${z_2} = c + dic,dinR$.

Khi đó: ${z_1}{z_2} = a+bic+di = acbrmd + armd+bci$.

    • Với mọi số thực k  và mọi số phức $z = a + bia,binR$, ta có

k.z = ka+bi=ka + kbi  Đặc biệt: 0.z = 0 với mọi số phức z.

    • Lũy thừa của  :

.

2.3. Chia hai số phức

Số phức nghịch đảo của z khác 0 là số ${z^{ – 1}} = frac{1}{{{{left| z right|}^2}}}overline z $.

Phép chia hai số phức z’ và z khác 0 là $frac{{z’}}{z} = z'{z^{ – 1}} = frac{{z’overline z }}{{{{left| z right|}^2}}} = frac{{z’overline z }}{{zoverline z }}$.

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *