Câu 30: Đáp án D
Ta có $int{fleft
Câu 31: Đáp án C
Độ dài đường sinh $l=frac{r}{sin {{60}^{circ }}}=frac{3}{sqrt{3}/2}=2sqrt{3}Rightarrow {{s}_{xq}}=pi rl=6pi sqrt{3}.$
Câu 32: Đáp án B
Ta có: ${{V}_{S.ABC}}=frac{1}{2}SA.{{S}_{ABC}}=frac{1}{2}SA.frac{1}{2}AB.AC.sin {{120}^{circ }}=frac{{{a}^{3}}sqrt{3}}{6}.$
Câu 33: Đáp án A
Ta có: $underset{xto 0}{mathop{lim ,}},frac{sqrt{3x+1}-1}{x}=underset{xto 0}{mathop{lim ,}},frac{3x}{xleft
Câu 34: Đáp án A
Thiết diện là hình thang EFJI
Để thiết diện là hình bình hành thì $text{EF}=text{IJ}$
$Leftrightarrow frac{2}{3}AB=frac{AB+CD}{2}Leftrightarrow frac{1}{6}AB=frac{CD}{2}Leftrightarrow AB=3CD.$
Câu 35: Đáp án C
Phương trình hoành độ giao điểm: ${x^3} – 3x = kleft
x = – 1\
gleft
end{array} right.$
Để
gleft
Delta > 0
end{array} right. leftrightarrow left{ begin{array}{l}
k ne 0\
k > – frac{9}{4}
end{array} right..$
Giả sử ${{x}_{1}};{{x}_{2}}$ là hoành độ của N,P đồng thời là nghiệm phương trình $gleft
Ta có: $ to left{ begin{array}{l}
{x_1} + {x_2} = 1\
{x_1}{x_2} = – k – 2
end{array} right.$
Theo bài ra ta có tiếp tuyến tại N,P vuông góc nên: $begin{array}{l}
y’left
leftrightarrow 9{x_1}^2{x_2}^2 – 9{left
to 9{k^2} + 18k + 1 = 0 leftrightarrow left[ begin{array}{l}
{k_1} = frac{{ – 3 + 2sqrt 2 }}{3}\
{k_2} = frac{{ – 3 – 2sqrt 2 }}{3}
end{array} right.left
end{array}$
Câu 36: Đáp án C
Ta có: $fleft
Hàm số liên tục tại điểm $x=2Leftrightarrow ,underset{xto 2}{mathop{lim }},,fleft
$Leftrightarrow underset{xto 2}{mathop{lim }},,frac{left
Câu 37: Đáp án C
$2C_{14}^{k+1}=C_{14}^{k}+C_{14}^{k+2}Leftrightarrow 2.frac{14!}{left
$Leftrightarrow frac{2left
Câu 38: Đáp án D
Chọn 4 học sinh bất kỳ có: $left| Omega right|=C_{13}^{4}=715$
Gọi A là biến cố: “4 học sinh được chọn có đủ 3 khối”
Khi đó $left| {{Omega }_{A}} right|=C_{4}^{2}.C_{4}^{1}.C_{5}^{1}+C_{4}^{1}.C_{4}^{2}.C_{5}^{1}+C_{4}^{1}.C_{4}^{1}.C_{5}^{2}=400$
Do đó $Pleft
Câu 39: Đáp án D
Giả sử với $x=2$ ta có: $HB=left| {{log }_{b}}2 right|;HA=left| {{log }_{a}}2 right|.$ Theo bài ra ta có:
Câu 40: Đáp án A
$sqrt 2 c{rm{os}}3x = {mathop{rm s}nolimits} {rm{inx}} + cos x leftrightarrow c{rm{os}}3x = cos xleft
x = – frac{pi }{8} + kpi \
x = frac{pi }{{16}} + frac{{lpi }}{2}
end{array} right.$
$x in left
x = frac{{7pi }}{8};x = frac{{15pi }}{8}\
x = frac{pi }{{16}};x = frac{{9pi }}{{16}};x = frac{{17pi }}{{16}};x = frac{{25pi }}{{16}}
end{array} right. to sum {left
Câu 41: Đáp án B
Ta có $y’=3{{x}^{2}}-6x-m;y”=6x-6;,forall xin mathbb{R}$
Để hàm số có hai điểm cực trị $Leftrightarrow y’=0$ có 2 nghiệm phân biệt $Leftrightarrow m>-3.$
Xét biểu thức $fleft
Suy ra $y=-left
Vì $A,B,Mleft
Câu 42: Đáp án D
Đặt $t=ttext{anx}Leftrightarrow text{dt=}frac{dx}{ctext{o}{{text{s}}^{2}}x};1+{{tan }^{2}}x=frac{1}{ctext{o}{{text{s}}^{2}}x}Leftrightarrow frac{1}{ctext{o}{{text{s}}^{2}}x}={{t}^{2}}+1Leftrightarrow ctext{o}{{text{s}}^{2}}x=frac{1}{{{t}^{2}}+1}Rightarrow {{sin }^{2}}x=frac{{{t}^{2}}}{{{t}^{2}}+1}.$
Khi đó $int{fleft
Vậy $int{fleft
Câu 43: Đáp án B
Gọi I là trung điểm thỏa mãn $overrightarrow{IA}+overrightarrow{IB}+2overrightarrow{IC}=0Rightarrow Ileft
Ta có Mà $Min left
Khi đó $P=4overrightarrow{MI}=4sqrt{{{left
Dấu “=” xảy ra khi và chỉ khi $left{ begin{array}{l}
x = 1\
y = 3
end{array} right..$ Vậy $Mleft
Câu 44: Đáp án B
Tam giác AMN có $AM=frac{asqrt{5}}{2};AN=asqrt{2};MN=frac{3a}{2}.$
Tam giác AMN có $CM=frac{asqrt{5}}{2};CN=asqrt{2};MN=frac{3a}{2}.$
Suy ra$Delta AMN=Delta CMN.$ Kẻ $AHbot MN,,left
Do đó $widehat{left
Diện tích $Delta AMN$ là $S=frac{3{{a}^{2}}}{4}Rightarrow AH=frac{2.S}{MN}=a$ mà $AC=asqrt{2}$
Suy ra tam giác AHC vuông cân. Vậy $varphi ={{90}^{circ }}.$
Câu 45: Đáp án C
Số phần tử của tập S là $5!=120$ số.
Mỗi số $5,6,7,8,9$ có vai trò như nhau và xuất hiện ở hàng đơn vị $4!=24$ lần
Tổng các chữ số xuất hiện ở hàng đơn vị là $4!.left
Tương tự với các chữ số hàng chục, hàng tram, hàng nghìn và hàng chục nghìn.
Vậy tổng tất cả các số thuộc tập S là $840.left
Câu 46: Đáp án D
Gọi parabol $left
Đồ thị $left
a + b + c = 1\
– frac{b}{{2a}} = 1;c = 2
end{array} right. Rightarrow left{ begin{array}{l}
a = 1\
b = – 2\
c = 2
end{array} right..$
Suy ra $left
Câu 47: Đáp án C
Đặt $t={{x}^{2}}-2y,$ khi đó giả thiết $Leftrightarrow {{4.9.3}^{t}}=left
Xét hàm số $fleft
Khi đó $left
Do đó $P=frac{x+{{x}^{2}}-2+18}{x}=x+frac{16}{x}+1ge 2sqrt{x.frac{16}{x}}+1=2.4+1=9.$ Vậy ${{P}_{min }}=9.$
Câu 48: Đáp án C
Các đồ thị hình vẽ bên chính là đồ thi của các hàm số lượng giác.
Câu 49: Đáp án B
Để xếp được số viên phấn nhiều nhất ta sẽ xếp xen kẽ các viên phấn.
Do đó, số viên bi tối đa xếp được là $153$ viên.
Câu 50: Đáp án B
Chuẩn hóa khối chóp S.ABC có $left{ begin{array}{l}
SA = AB = AC = 1\
SA, bot AB bot AC
end{array} right..$
Kẻ $MQ//SC,NP//SCRightarrow $ Mặt phẳng $left
Nên áp dụng định lí Menelaus, ta được
- $frac{MA}{MS}.frac{NS}{NB}.frac{IB}{IA}=1Rightarrow frac{IB}{IA}=frac{1}{4}.$
- $frac{BA}{BI}.frac{NI}{NM}.frac{SM}{SA}=1Rightarrow frac{NI}{NM}=1Rightarrow frac{IN}{IM}=frac{1}{2}Rightarrow frac{IN}{IM}=frac{IP}{IQ}.$
Suy ra $frac{{{V}_{I.BNP}}}{{{V}_{I.AMQ}}}=frac{1}{4}.frac{1}{2}.frac{1}{2}=frac{1}{16}$ mà ${{V}_{AMIQ}}=frac{8}{81}Rightarrow {{V}_{2}}=frac{15}{16}.frac{8}{81}=frac{5}{54}.$
Mặt khác ${{V}_{S.ABC}}=frac{1}{6}Rightarrow {{V}_{1}}=frac{4}{54},$ Vậy $frac{{{V}_{1}}}{{{V}_{2}}}=frac{4}{5}.$