HƯỚNG DẪN GIẢI
Bài 1
1. Rút gọn biểu thức
$a),sqrt{12}+3sqrt{48}-5sqrt{75}=2sqrt{3}+12sqrt{3}-25sqrt{3}=-11sqrt{3}$
$begin{array}{l}
b){mkern 1mu} {mkern 1mu} 5sqrt {frac{1}{5}} – dfrac{8}{{1 + sqrt 5 }} + dfrac{{sqrt {20} – 5}}{{2 – sqrt 5 }} = dfrac{{5sqrt 5 }}{5} – dfrac{{8left
= sqrt 5 – dfrac{{8left
{mkern 1mu} {mkern 1mu} {mkern 1mu} {mkern 1mu} = 2sqrt 5 + 2 – 2sqrt 5 = 2
end{array}$
2. Giải phương trình:
$a){mkern 1mu} {mkern 1mu} sqrt {9{x^2}} = 6 Leftrightarrow 3left| x right| = 6 Leftrightarrow left| x right| = 2 Leftrightarrow left[ begin{array}{l}
x = 2\
x = – 2
end{array} right.$
Vậy $xin left{ -2;2 right}$
$b)sqrt {4x – 20} + sqrt {x – 5} – frac{1}{3}sqrt {9x – 45} = 4{mkern 1mu} {mkern 1mu} {mkern 1mu} {mkern 1mu} {mkern 1mu} {mkern 1mu} {mkern 1mu} {mkern 1mu} $ ĐK: $x ge 5$
$begin{array}{l}
Leftrightarrow 2sqrt {x – 5} + sqrt {x – 5} – sqrt {x – 5} = 4 Leftrightarrow 2sqrt {x – 5} = 4\
Leftrightarrow sqrt {x – 5} = 2 Leftrightarrow x – 5 = 4 Leftrightarrow x = 9left
end{array}$
Vậy$x=9$ .
Bài II
a) Rút gọn: ĐK: $xge 0;xne 1$
$begin{array}{l}
B = dfrac{1}{{sqrt x – 1}} + dfrac{{sqrt x }}{{sqrt x + 1}} + dfrac{{2sqrt x }}{{1 – x}}\
B = dfrac{1}{{sqrt x – 1}} + dfrac{{sqrt x }}{{sqrt x + 1}} – dfrac{{2sqrt x }}{{x – 1}}\
B = dfrac{1}{{sqrt x – 1}} + dfrac{{sqrt x }}{{sqrt x + 1}} – dfrac{{2sqrt x }}{{left
end{array}$
$begin{array}{l}
B = dfrac{{sqrt x + 1 + sqrt x left
B = dfrac{{x – 2sqrt x + 1}}{{left
end{array}$
$begin{array}{l}
B = dfrac{{{{left
B = dfrac{{sqrt x – 1}}{{sqrt x + 1}}
end{array}$
b) $P=A:B=dfrac{sqrt{x}-1}{x+3}$ . ĐK: $xge 0;xne 1$
$P<0Leftrightarrow dfrac{sqrt{x}-1}{x+3}<0$
Mà $x+3ge 3>0$ $forall x$ tm ĐKXĐ
$begin{array}{l}
Rightarrow sqrt x – 1 < 0\
Leftrightarrow sqrt x < 1\
Leftrightarrow 0 le x < 1
end{array}$
Kết hợp ĐKXĐ: $xge 0;xne 1$
$Rightarrow 0le x<1$
Vậy $P<0$ khi $0le x<1$
c) $dfrac{1}{P}=dfrac{x+3}{sqrt{x}-1}=dfrac{x-1+1+3}{sqrt{x}-1}=sqrt{x}+1+dfrac{4}{sqrt{x}-1}=sqrt{x}-1+dfrac{4}{sqrt{x}-1}+2$
Có: $x>1Leftrightarrow sqrt{x}-1>0Leftrightarrow dfrac{4}{sqrt{x}-1}>0$
Áp dụng bất đẳng thức Cô Si với hai số $sqrt{x}-1>0{{;}_{{}}}dfrac{4}{sqrt{x}-1}>0$ có:
$begin{array}{l}
sqrt x – 1 + dfrac{4}{{sqrt x – 1}} ge 2.sqrt {left
Leftrightarrow sqrt x – 1 + dfrac{4}{{sqrt x – 1}} + 2 ge 4 + 2\
Leftrightarrow dfrac{1}{P} ge 6
end{array}$
Dấu $”=”$ xảy ra
$begin{array}{l}
Leftrightarrow sqrt x – 1 = dfrac{4}{{sqrt x – 1}} Rightarrow {left
Leftrightarrow sqrt x – 1 = {2_{}}left
end{array}$
Vậy GTNN của $dfrac{1}{P}$ là $6$ khi $x=9$
Bài III
1. $left
$y=0$⇒ $x=dfrac{3}{2}$ ⇒ $left
$left
$y=0$ ⇒ $x=4$ ⇒ $left
2) Phương trình hoành độ giao điểm của $left
$-2x+3=0,5x-2$ ⇔ $x=2$ ⇒ $y=-1$
Vậy tọa độ điểm $Cleft
3) Tọa độ điểm $Aleft
$Rightarrow OA=3cm;OB=2cm;AB=OA+OB=5cm$
Kẻ $CHbot AB$. Vì $C
${{S}_{ABC}}=frac{1}{2}AB.CH$
Diện tích tam giác ABC là: $frac{1}{2}times 5times 2=5~left
Bài IV
a)
Do $Delta MAB$ nội tiếp đường tròn$
$Rightarrow Delta MAB$ vuông tại $M$ $Rightarrow widehat{AMB}={{90}^{o}}$ hay $widehat{EMF}={{90}^{o}}$
+) Xét nửa đường tròn $
$Rightarrow OEbot MA$
$Rightarrow widehat{MEO}={{90}^{o}}$
+) Xét nửa đường tròn $
$Rightarrow OFbot MB$
$Rightarrow widehat{MFO}={{90}^{o}}$
+) Xét tứ giác $text{MEOF}$có: $widehat{EMF}=widehat{MEO}=widehat{MFO}={{90}^{o}},,
à Tứ giác $text{MEOF}$ là hình chữ nhật
b) Xét $Delta ACO:$$OA=OMRightarrow Delta OMA$ là tam giác cân tại $O$
$OC$ là đường trung tuyến
$Rightarrow $ OC là đường trung trực của MA $Rightarrow CA=CM$
+) Xét $Delta ACOAnd Delta MCO:$
$begin{array}{l}
OM = OA\
CM = CA.
end{array}$
$OC:$là cạnh chung
$Rightarrow Delta ACO=Delta MCO,
Suy ra được $widehat{CAO}=widehat{CMO}={{90}^{o}}Rightarrow CAbot AB$
Mà A$in $ nửa
Nên CA là tiếp tuyến của nửa
+) Xét $Delta AEO$ vuông tại E có $widehat{EAO}={{30}^{o}}Rightarrow widehat{EOA}={{60}^{o}}$
+) $tanwidehat{AOC}=dfrac{CA}{AO}Rightarrow CA=AO.tanwidehat{AOC}=3sqrt{3},,
+) Vì F là trung điểm của MB
$Rightarrow OD$ là đường trung trực của $MBRightarrow BD=MD
+) Chứng minh: $widehat{EOF}={{90}^{o}}$ hay $widehat{COD}={{90}^{o}}$
+) Xét $Delta COD$ vuông tại O
$Rightarrow O{{M}^{2}}=CM.MD$
$Rightarrow CM.MD={{R}^{2}}$,
Mà $CM=CA;MD=BD$
+) Chứng minh: $Delta BDO=Delta MDO,,
Mà $widehat{DMO}={{90}^{o}}Rightarrow widehat{DBO}={{90}^{o}}Rightarrow DBbot AB$
+) Ta có: $CAbot AB,,,DBbot AB,,
à Tứ giác $ACDB$ là hình thang $Rightarrow {{S}_{ACDB}}=dfrac{1}{2}left
Áp dụng bđt Cô si, ta được:
$AC+BDge 2sqrt{AC.BD}=2sqrt{{{R}^{2}}}=2R$
$Rightarrow {{S}_{ACDB}}=dfrac{1}{2}left
Vậy ${{S}_{ACDB}}ge 2{{R}^{2}}$
d)
$Delta CEI$ và $Delta BFI$ có CE//BF $Rightarrow dfrac{CI}{IB}=dfrac{CE}{BF}$
$Delta COD$ có ME//OD $Rightarrow dfrac{CE}{EO}=dfrac{CM}{MD}$
Mà EO = MF = BF $Rightarrow dfrac{CE}{BF}=dfrac{CE}{EO}$
Từ
$Rightarrow MI//BD$
$Rightarrow MKbot AB,,
Xét $Delta MKA$ vuông tại K: có $KE$ là đường trung tuyến ứng với cạnh huyền $MA$
$Rightarrow KE=ME=dfrac{MA}{2}$
Chứng minh tương tự : $KF=MF$
$Rightarrow EF$ là đường trung trực của MK.
Bài V
Cách 1:
$begin{array}{l}
2M = 2sqrt 3 xy + 2{y^2}\
2M = {x^2} + 2sqrt 3 xy + 3{y^2} – {x^2} – {y^2}\
2M = {left
M ge frac{{ – 1}}{2}
end{array}$
Vậy GTNN $M = – frac{1}{2}$ dấu bằng xẩy ra khi $left[ begin{array}{l}
left{ begin{array}{l}
x = – frac{{sqrt 3 }}{2}\
y = frac{1}{2}
end{array} right.\
left{ begin{array}{l}
x = frac{{sqrt 3 }}{2}\
y = – frac{1}{2}
end{array} right.
end{array} right.$