Loading [MathJax]/extensions/tex2jax.js

giải chi tiết đề 19 trang 2

Câu 33: Đáp án B.

Phương trình $Delta :left{ begin{array}{l}
x = 1 + 2t\
y = t\
z =  – 2 – t
end{array} right..$ 

Tọa độ điểm $C=Delta cap leftPright$ là $Cleft1;1;1right$

Lấy điểm $Mleft1+2t;t;2trightRightarrow MC=sqrt{6}Leftrightarrow {{left2t+2right}^{2}}+{{leftt+1right}^{2}}+{{leftt+1right}^{2}}=6$

$ Leftrightarrow left[ begin{array}{l}
t = 0 Rightarrow Mleft1;0;2right Rightarrow dleftM;left(Pright)right = frac{1}{{sqrt 6 }}\
t =  – 2 Rightarrow Mleft3;2;0right Rightarrow dleftM;left(Pright)right = frac{1}{{sqrt 6 }}
end{array} right.$

Câu 34: Đáp án C.

Mặt phẳng $leftABCright:dfrac{x}{1}+dfrac{y}{b}+dfrac{z}{c}=1$ và $leftABCrightbot leftPright$

$Rightarrow dfrac{1}{b}-dfrac{1}{c}=0Leftrightarrow b=cRightarrow leftABCright:bx+y+z-b=0$

$dleftO;left(ABCright right)=dfrac{1}{3}Leftrightarrow dfrac{left| b right|}{sqrt{{{b}^{2}}+2}}=dfrac{1}{3}Leftrightarrow b=dfrac{1}{2}leftb>0rightRightarrow b=c=dfrac{1}{2}Rightarrow b+c=1$

Câu 35: Đáp án A.

Bất phương trình $Leftrightarrow 0<x-1le 4Leftrightarrow 1<xle 5$

Câu 36: Đáp án A.

Đặt ${{log }_{9}}x={{log }_{12}}y={{log }_{16}}leftx+yright=aRightarrow x={{9}^{a}};y={{12}^{a}};x+y={{16}^{a}}$

$Rightarrow {{9}^{a}}+{{12}^{a}}={{16}^{a}}Leftrightarrow {{leftdfrac34right}^{2a}}+{{leftdfrac34right}^{a}}=1Rightarrow {{leftdfrac34right}^{a}}=dfrac{sqrt{5}-1}{2}$

$Rightarrow dfrac{x}{y}={{leftdfrac34right}^{2a}}={{leftdfracsqrt512right}^{2}}=dfrac{3-sqrt{5}}{2}$

Câu 37: Đáp án A.

Điều kiện: $-dfrac{1}{2}<x<3$

Phương trình $Leftrightarrow {{log }_{3}}left2x+1right={{log }_{3}}dfrac{1}{3-x}Leftrightarrow 2x+1=dfrac{1}{3-x}.$

Giải phương trình chọn A.

Câu 38: Đáp án C.

Bất phương trình $Leftrightarrow {{leftsqrt10+1right}^{{{log }_{3}}x}}-{{leftsqrt101right}^{{{log }_{3}}x}}ge dfrac{2}{3}{{.3}^{{{log }_{3}}x}}$

$Leftrightarrow {{leftdfracsqrt10+13right}^{{{log }_{3}}x}}-{{leftdfracsqrt1013right}^{{{log }_{3}}x}}ge dfrac{2}{3}Rightarrow t-dfrac{1}{t}ge dfrac{2}{3}Leftrightarrow {{t}^{2}}-1ge dfrac{2}{3}tLeftrightarrow 3{{t}^{2}}-2t-3ge 0$

Câu 39: Đáp án B.

Điều kiện $x>dfrac{1+sqrt{33}}{2}.$ Đặt $t={{log }_{3}}xLeftrightarrow x={{3}^{t}}$

Ta có bất phương trình: ${{9}^{t}}<{{4.4}^{t}}+{{3}^{t}}+8Leftrightarrow 4.{{leftdfrac49right}^{t}}+{{leftdfrac13right}^{t}}+8{{leftdfrac19right}^{t}}>1$

Hàm số $flefttright=4.{{leftdfrac49right}^{t}}+{{leftdfrac13right}^{t}}+8{{leftdfrac19right}^{t}}$ nghịch biến và $fleft2right=1$nên ta có $t<2$  tìm được tập nghiệm là $leftdfrac1+sqrt332;9right$ có độ dài trên trục số là $9-dfrac{1+sqrt{33}}{2}=dfrac{17-sqrt{33}}{2}.$

Câu 40: Đáp án C.

$left| z right|=sqrt{{{leftdfrac12right}^{2}}+{{leftdfracsqrt32right}^{2}}}=sqrt{dfrac{1}{4}+dfrac{3}{4}}=1$

Câu 41: Đáp án C.

Đặt $z=x+yileftx;yinmathbbRrightRightarrow left| z-i right|=left| z+2+3i right|Leftrightarrow left| x+yi-i right|=left| x+yi+2+3i right|$

$Leftrightarrow sqrt{{{x}^{2}}+{{lefty1right}^{2}}}=sqrt{{{leftx+2right}^{2}}+{{lefty+3right}^{2}}}Leftrightarrow -2y+1=4x+6y+13$

$Leftrightarrow 4x+8y+12=0Leftrightarrow x+2y+3=0$ là trung trực của đoạn AB.

Câu 42: Đáp án A.

Đặt $z=x+yileftx;yinmathbbRright.$ Từ giả thiết ta có: ${{leftx3right}^{2}}+{{lefty+4right}^{2}}=16$

$Rightarrow zin $đường tròn tâm $Ileft3;4right,R=4.$

Viết phương trình đường thẳng $Delta $ qua O,I cắt đường tròn tại AB.

Từ đó ta có: $max left| z right|=9$ vaf $min left| z right|=1$.

Câu 43: Đáp án C.

Ta có $z=dfrac{i-m}{-{{i}^{2}}+2mi-{{m}^{2}}}=dfrac{-1}{i-m}Rightarrow z-1=dfrac{1-m+i}{m-i}$

$left| {z – 1} right| = frac{{left| {1 – m + i} right|}}{{left| {m – i} right|}} = sqrt {frac{{{m^2} – 2m + 2}}{{{m^2} + 1}}}  Rightarrow left| {z – 1} right| le k Leftrightarrow left{ begin{array}{l}
k ge 0\
frac{{{m^2} – 2m + 2}}{{{m^2} + 1}} le {k^2}
end{array} right.$

Xét $fleftmright=dfrac{{{m}^{2}}-2m+2}{{{m}^{2}}+1}$. Khảo sát $Rightarrow min fleftmright=dfrac{3-sqrt{5}}{2}Rightarrow k=dfrac{sqrt{5}-1}{2}$

Câu 44: Đáp án A.

Câu 45: Đáp án D.

$I=intlimits_{a}^{b}{text{d}x+intlimits_{a}^{b}{dfrac{x.cos x}{x.sin x+cos x}text{d}x}=b-a+m}$.

Câu 46: Đáp án A.

 Câu 47: Đáp án C.

Đặt $left{ begin{array}{l}
u = ln x\
dv = dx
end{array} right. Rightarrow left{ begin{array}{l}
du = frac{1}{x}dx\
v = x
end{array} right.$

Câu 48: Đáp án C.

$S = intlimits_0^1 {{x^2}sqrt {{x^2} + 1} dx}  = intlimits_0^1 {leftx3+xrightdleftsqrtx2+1right}  = leftx2+xrightsqrt {{x^2} + 1} left| begin{array}{l}
^1\
_0
end{array} right. – intlimits_0^1 {sqrt {{x^2} + 1} .left3rmx2+1rightdx} $

$ = 2sqrt 2  – 3S – intlimits_0^1 {sqrt {{x^2} + 1} dx} $

Đặt $x=tan xRightarrow a=3,b=2,c=8$

Câu 49: Đáp án A.

Đặt $left{ begin{array}{l}
u = fleftxright\
dv = sin xdx
end{array} right. Rightarrow left{ begin{array}{l}
du = f’leftxrightdx\
v =  – cos x
end{array} right.$

$ Rightarrow intlimits_0^{frac{pi }{2}} {fleftxright.sin xdx}  =  – fleftxright.cos xleft| begin{array}{l}
^{frac{pi }{2}}\
_0
end{array} right. + intlimits_0^{frac{pi }{2}} {f’leftxright.cosxdx}  Leftrightarrow 1 = fleft0right + intlimits_0^{frac{pi }{2}} {f’leftxright.cosxdx} $

$ Rightarrow intlimits_0^{frac{pi }{2}} {f’leftxright.cosxdx = 0} $

Đặt $left{ begin{array}{l}
u = f’leftxright\
dv = cos xdx
end{array} right. Rightarrow left{ begin{array}{l}
du = f”leftxrightdx\
v = sin x
end{array} right.$

$ Rightarrow 0 = intlimits_0^{frac{pi }{2}} {f’leftxright.cosxdx}  = f’leftxright.sinxleft| begin{array}{l}
^{frac{pi }{2}}\
_0
end{array} right. – intlimits_0^{frac{pi }{2}} {f”leftxright.sinxdx} $

$ Rightarrow 0 = f’leftfracpi2right – 1 Rightarrow f’leftfracpi2right = 1$

Câu 50: Đáp án A.

$gleftxright=6fleftxright+{{x}^{3}}Rightarrow g’leftxright=6f’leftxright+3{{x}^{2}}$

$g”leftxright=6.f”leftxright+6x=6leftfleft(xright)+xright$

$ Rightarrow g”leftxright = 0 Leftrightarrow f”leftxright =  – x Leftrightarrow left[ begin{array}{l}
x =  – 3\
x = 4\
x = 3\
x = 1
end{array} right.$

Theo hình vẽ ta có: $intlimits_{ – 3}^1 {leftxfleft(xright)rightdx}  > intlimits_1^3 {leftfleft(xright)+xrightdx}  > intlimits_3^4 {leftxfleft(xright)rightdx} $

$ Leftrightarrow leftfracx22fleft(xright)rightleft| begin{array}{l}
^1\
_{ – 3}
end{array} right. > leftfleft(xright)+fracx22rightleft| begin{array}{l}
^3\
_1
end{array} right. > leftfracx22fleft(xright)rightleft| begin{array}{l}
^4\
_3
end{array} right.$

$ Leftrightarrow  – g’leftxrightleft| begin{array}{l}
^1\
_{ – 3}
end{array} right. > g’leftxrightleft| begin{array}{l}
^3\
_1
end{array} right. >  – g’leftxrightleft| begin{array}{l}
^4\
_3
end{array} right.$

$ Leftrightarrow g’left3right – g’left1right > g’left3right – g’left1right > g’left3right – g’left4right Leftrightarrow left{ begin{array}{l}
g’left3right > g’left3right\
g’left4right > g’left1right
end{array} right.$

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *