Đề 5: Đề thi giữa kì 2 môn Toán 9 Q. Tây Hồ Hà Nội năm 2013-2014

PHÒNG GIÁO DỤC VÀ ĐÀO TẠO

QUẬN TÂY HỒ
 

ĐỀ KIỂM TRA GIỮA HỌC KỲ II

NĂM HỌC 2013 – 2014

Môn Toán lớp 9 – Thời gian: 90 phút

 

Bài 1 (2 điểm): Giải các hệ phương trình sau:

  1. $\left\{ \begin{array}{l}
    3x - 7y =  - 55\\
    5x + 4y = 18
    \end{array} \right.$
  2. $\left\{ \begin{array}{l}
    0,8x + y = 0,6\\
    0,3x - 0,9y = 1,5
    \end{array} \right.$

Bài 2 (2 điểm):

Cho ba điểm $A\left( 0;-8 \right);B\left( \dfrac{5}{2};2 \right);C\left( 1;7 \right)$ và đường thẳng $\left( {{d}_{1}} \right)$ có phương trình $3x+2y=-1.$

  1. Viết phương trình đường thẳng $\left( {{d}_{2}} \right)$ đi qua hai điểm A và B.
  2. Viết phương trình đường thẳng $\left( {{d}_{3}} \right)$ đi qua điểm C và song song với $\left( {{d}_{1}} \right)$

Bài 3 (2 điểm): Giải bài toán bằng cách lập phương trình hoặc hệ phương trình.

            Hai tổ sản xuất cùng may một loại áo. Nếu tổ một may trong $3$  ngày, tổ hai may trong $5$  ngày thì cả hai tổ may được $1310$  chiếc áo. Biết rằng trong một ngày tổ một may nhiều hơn tổ hai là$~10$ áo. Hỏi mỗi tổ trong một ngày may được bao nhiêu chiếc áo.

Bài 4 (3 điểm):

Cho tam giác $ABC\text{ }\left( AB<AC \right)$ có 3 góc nhọn nội tiếp trong đường tròn $\left( O;R \right)$ . Gọi $H$ là giao điểm của 3 đường cao $AD,\text{ }BE,\text{ }CF$ của tam giác $ABC$ .

  1. Chứng minh rằng các tứ giác $AEHF,\text{ }AEDB$ nội tiếp được.
  2. Vẽ đường kính $AK$ của đường tròn $\left( O \right).$ Chứng minh $AB.AC=2R.AD.$
  3. Chứng minh $OC$ vuông góc với $DE.$

Bài 5 (1 điểm): Tìm các số tự nhiên $x,\text{ }y$ thỏa mãn phương trình $2x+5y=35$

Chia sẻ:
Sidebar Trang chủ Tài khoản