Loading [MathJax]/extensions/tex2jax.js

Đề 15: Tỉnh Bến Tre

SỞ GIÁO DỤC VÀ ĐÀO TẠO

BẾN TRE

ĐỀ CHÍNH THỨC

       ĐỀ THI TUYỂN SINH VÀO LỚP 10 THPT 

NĂM HỌC 2017 – 2018

Môn: TOÁN chung

Thời gian: 120 phút khôngkphátđ

                    

Câu 1. (2.5 điểm)

a) Rút gọn các biểu thức:  

$text{A}=sqrt{12}+sqrt{27}-sqrt{48}$. 

            $text{B}=leftdfrac1sqrtx1frac1sqrtx+1right:dfrac{x+1}{x-1}$ với $xge 0$  và $xne pm 1$.
b) Giải hệ phương trình: (left{ begin{align}   & x+2y=12 \  & 3x-y=1 \ end{align} right..)

 

Câu 2. (2 điểm)

            Cho phương trình: ${{x}^{2}}+5x+m=0$    mlàthams

a) Giải phương trình khi $m=-3.$

b) Tìm m để phương trình có hai nghiệm ${{x}_{1}},{{x}_{2}}$ thỏa mãn $9x_{1}^{{}}+2x_{2}^{{}}=18.$

 

Câu 3. (2 điểm)

Trong mặt phẳng tọa độ $leftOxyright$, cho parabol P: $y=dfrac{1}{2}{{x}^{2}}$ và đường thẳng d: $y=left2m1rightx+5$.

            a) Vẽ đồ thị của P.

            b) Tìm m để đường thẳng d đi qua điểm $text{E}left7;12right$.

c) Đường thẳng $y=2$ cắt parabol P tại hai điểm A, B. Tìm tọa độ của A, B và tính diện tích tam giác OAB.

 

Câu 4. (3.5 điểm)

            Cho đường tròn O;R có đường kính AB vuông góc với dây cung MN tại H HnmgiaOvàB. Trên tia MN lấy điểm C nằm ngoài đường tròn O;R sao cho đoạn thẳng AC cắt đường tròn O;R tại điểm K KkhácA, hai dây MN và BK cắt nhau ở E.

a) Chứng minh rằng tứ giác AHEK là tứ giác nội tiếp.

b) Chứng minh: CA.CK = CE.CH.

c) Qua điểm N, kẻ đường thẳng d vuông góc với AC, d cắt tia MK tại F. Chứng minh tam giác $NFK$ cân.

d) Khi KE = KC. Chứng minh rằng: OK // MN.

 

 

   HẾT

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *