Loading [MathJax]/extensions/MathMenu.js

Đề 13: Tỉnh Điện Biên

SỞ GIÁO DỤC VÀ ĐÀO TẠO

TỈNH ĐIỆN BIÊN

 

Đề chính thức

Có01trang

KÌ THI TUYỂN SINH VÀO LỚP 10 THPT

NĂM HỌC 2018 – 2019

  Môn: Toán chuyên

Ngày thi: 06/6/2018

Thời gian làm bài 150 phút, không kể thời gian giao đề

 

Câu 1 2,0đim. Cho biểu thức $P=dfrac{sqrt{x}+2}{sqrt{x}+1}-dfrac{sqrt{x}+3}{5-sqrt{x}}-dfrac{3x+4sqrt{x}-5}{x-4sqrt{x}-5},xge0;xne25$.

a) Rút gọn $P.$ Tìm các số thực $x$ để $P>-2$.

b) Tìm các số tự nhiên $x$ là số chính phương sao cho $P$ là số nguyên.

Câu 2 (1,5 điểm).

a) Trong mặt phẳng tọa độ $Oxy$, cho đường thẳng $d:y=-2x+3$ và Parabol $P:y={{x}^{2}}$. Tìm tọa độ các giao điểm $A,B$ của $d$và $P$. Tính độ dài đường cao $OH$ của tam giác $OAB$.

b) Cho phương trình: ${{x}^{2}}-{{m}^{2}}x+m+1=0$ 1, $m$ là tham số. Tìm tất cả các số tự nhiên $m$ để phương trình 1 có nghiệm nguyên.

Câu 3 2,0đim.

a) Giải hệ phương trình: $left{ begin{array}{l}
xy – frac{x}{y} = frac{{16}}{3}\
xy – frac{y}{x} = frac{9}{2}
end{array} right.$

b) Giải phương trình $x+16-6sqrt{2x+1}=2sqrt{5-x}$.

Câu 4 2,5đim. Cho hình thang $ABCD$AB//CD,$AB<CD$. Gọi $K,M$ lần lượt là trung điểm của $BD$ và $AC$. Đường thẳng đi qua $K$ và vuông góc với $AD$ cắt đường thẳng đi qua $M$ và vuông góc với $BC$ tại $Q$. Chứng minh:

a) KM // AB.

b) $QD=QC.$

Câu 5 1,0đim. Có bao nhiêu tập hợp con $A$ của tập hợp $S=left{ 1,2,3…2018 right}$ thỏa mãn điều kiện $A$ có ít nhất hai phần tử và nếu $xin A,,yin A,,x>y$ thì $dfrac{{{y}^{2}}}{x-y}in A$.

Câu 6 (1,0 điểm). Trên đường tròn $leftOright$ lấy hai điểm cố định $A$ và $C$ phân biệt. Tìm vị trí của các điểm $B$ và $D$ thuộc đường tròn đó để chu vi tứ giác $ABCD$ đạt giá trị lớn nhất.

 

……………….Hết………………..

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *