Bài 6: ỨNG DỤNG TÍCH PHÂN

6. ỨNG DỤNG TÍCH PHÂN

6.1. Diện tích hình phẳng

6.1.1. Diện tích hình phẳng giới hạn bởi 1 đường cong và trục hoành

Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = fx liên tục trên đoạn a;b , trục hoành và hai đường thẳng x = a, x = b được xác định: $S = intlimits_a^b {left| {fx} right|} d{rm{x}}$

 

6.1.2. Diện tích hình phẳng giới hạn bởi 2 đường cong

Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = fx, y = gx liên tục trên đoạn a;b và hai đường thẳng x = a, x= b được xác định: $S = intlimits_a^b {left| {fx – gx} right|} d{rm{x}}$

       

      – Nếu trên đoạn a;b, hàm số fx không đổi dấu thì: $intlimits_a^b {left| {fx} right|} d{rm{x = }}intlimits_a^b {left| {fxdx} right|} $

– Nắm vững cách tính tích phân của hàm số có chứa giá trị tuyệt đối

– Diện tích của hình phẳng giới hạn bởi các đường x = gy,

x = hy và hai đường thẳng y = c, y = d được xác định: $S = intlimits_c^d {left| {gy – hy} right|} dy$

6.2. Thể tích vật thể và thể tích khối tròn xoay

6.2.1. Thể tích vật thể

Gọi B là phần vật thể giới hạn bởi hai mặt phẳng vuông góc với trục Ox tại các điểm ab; Sx là diện tích thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm x, $alexleb$. Giả sử Sx là hàm số liên tục trên đoạn a;b.

 

6.2.2. Thể tích khối tròn xoay

  – Thể tích khối tròn xoay được sinh ra khi quay hình phẳng giới hạn bởi các đường y = fx, trục hoành và hai đường thẳng x = a, x = b quanh trục Ox:

– Thể tích khối tròn xoay được sinh ra khi quay hình phẳng giới hạn bởi các đường x = gy, trục hoành và hai đường thẳng y =c, y= d quanh trục Oy:

– Thể tích khối tròn xoay được sinh ra khi quay hình phẳng giới

 

hạn bởi các đường y = fx, y = gx và hai đường thẳng x = a, x = b quanh trục Ox: $V = pi intlimits_a^b {left| {{f^2}x – {g^2}x} right|} dx$

 

 

 

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *