User Avatar
Tài khoản
User Avatar
Avatar
Chia sẻ của bạn ...
Gửi
Trang Đỗ Thị Huyền
Trang Đỗ Thị Huyền lúc 05:19 ngày 03.06.2019
Tìm nghiệm nguyên của phương trình?

Giải phương trình nghiệm nguyên sau: $2x^6+y^2-3x^3y=320$

Bạn cần phải đăng nhập thì mới có thể gửi câu trả lời!
Trang Đỗ Thị Huyền
Trang Đỗ Thị Huyền
Trả lời lúc 05:20 ngày 03.06.2019

Cách 1. Viết phương trình đã cho dưới dạng : $\left ( x^{3} \right )^{2} + \left ( x^{3} - y \right )^{2} = 320$.
Đặt $u = x^{3}$ , $v = x^{3} - y$. Ta có : $u^{2} + v^{2} = 320$. Do 320 là số chẵn nên $u$ và $v$ có cùng tính chẵn lẻ.

Giả sử $u$ , $v$ cùng lẻ, thế thì ${{u}^{2}}\equiv 1\left( \bmod \,4 \right)$ và ${{v}^{2}}\equiv 1\left( \bmod \,4 \right)$$\Rightarrow$ ${{u}^{2}}+{{v}^{2}}\equiv 2\left( \bmod \,4 \right)$ $\Rightarrow$ $u^{2} + v^{2} \neq 320$, vô lý. Vậy $u$ và $v$ cùng chẵn.
Đặt $u = 2u_{1}$ , $v = 2v_{1}$, thay vào ta được $u_{1}^{2} + v_{1}^{2} = 80$. Lập luận tương tự, ta lại có $u_{1}$ và $v_{1}$ cùng chẵn. Tiếp tục, lại đặt $u_{1} = 2u_{2}$,$v_{1} = 2v_{2}$, và lại suy ra $u_{2}$ và $v_{2}$ cung chẵn $\left ( u_{2}^{2} + v_{2}^{2} = 20 \right )$.
Đặt $u_{2} = 2u_{3}$,$v_{2} = 2v_{3}$, ta lại được $u_{3}^{2} + v_{3}^{2} = 5$. Do $u$ là lập phương của một số nguyên và $u = 2^{3}u_{3}$, nên suy ra $u_{3}$ cũng là lập phương của một số nguyên. Từ đó các cặp $u_{3}$ ,$v_{3}$ thỏa mãn phương trình trên là : $\left ( 1, 2 \right ) ; \left ( -1, 2 \right ) ; \left ( 1, -2 \right ) ; \left ( -1, -2 \right )$.
Vậy dễ dàng tìm được các nghiệm $\left ( x, y \right )$ của phương trình đã cho là : $\left ( 2, -8 \right ) ; \left ( 2, 24 \right ) ; \left ( -2, -24 \right ) ; \left ( -2, 8 \right )$.

Cách 2. 

Ta có pt đã cho tương đương với:$(x^{3})^{2}+(x^{3}-y)^{2}=320$
Vì $x,y$  nguyên nên 320 là tổng của $2$ số chính phương
Mà 320 viết thành tổng của 2 số chính phương chỉ có trường hợp là $320=16^{2}+8^{2}$ hoặc $320=16^2+(-8)^2$.
Mà $x^{3}$ là lập phương của 1 số nguyên nên $x^{3}=8$ hoặc $x^3=-8$, suy ra $x=2$ hoặc $x=-2$
+)Với $x=2$ ta có: $64+(8-y)^{2}=320$, suy ra $y=24$ hoặc $y=-8$
+)Với $x=-2$ ta có: $64+(-8-y)^{2}=320$, suy ra $y=8$ hoặc $y=-24$

Rao vặt miễn phí toàn quốc