Loading web-font TeX/Math/Italic

Lời giải đề 19: Đề thi thử THPTQG môn Toán năm 2018 Sở GD&ĐT Hà Nội lần 1, mã đề 106 trang 1

ĐÁP ÁN THAM KHẢO

 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

B

B

A

C

C

B

C

A

D

C

C

D

A

B

A

D

D

D

D

C

B

A

A

A

B

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

C

D

C

C

A

D

B

D

C

B

D

B

D

A

D

B

D

B

C

C

A

A

B

B

A

 

HƯỚNG DẪN GIẢI

Câu 1: Chọn B.

Số hạng tổng quát của khai triển: $C_{8}^{k}{{x}^{8-k}}.{{left2right}^{k}}$.

Số hạng chứa ${{x}^{3}}$ ứng với $8-k=3Leftrightarrow k=5$.

Vậy hệ số của ${{x}^{3}}$ là $-C_{8}^{5}{{.2}^{5}}$.

Câu 2: Chọn B.

Ta có: $d=dleftI;left(Pright right)=frac{left| 2.1-2+2.left1right-1 right|}{3}=1$.

Bán kính mặt cầu là: $R=sqrt{{{d}^{2}}+{{r}^{2}}}=3$.

Vậy phương trình mặt cầu cần tìm là: ${{leftx1right}^{2}}+{{lefty2right}^{2}}+{{leftz+1right}^{2}}=9$.

Câu 3:  Chọn A.

Dựa vào đồ thị ta thấy

 

¦ Đồ thị có $3$ điểm cực trị và đi qua gốc tọa độ $O$ nên loại đáp án B, C.

¦ Nhánh cuối là một đường đi lên nên $a>0$ $Rightarrow $ chọn đáp án A.

Câu 4: Chọn C.

${log _{frac{1}{2}}}leftx2x+7right > 0 Leftrightarrow left{ begin{array}{l}
{x^2} – 5x + 7 > 0\
{x^2} – 5x + 7 < 1
end{array} right. Leftrightarrow left{ begin{array}{l}
{leftxfrac52right^2} + frac{3}{4} > 0,,forall x in R\
{x^2} – 5x + 6 < 0
end{array} right. Rightarrow x in left2;,3right$
 .

Câu 5: Chọn C.

Ta có: $y={{x}^{4}}+m{{x}^{2}}Rightarrow {y}’=4{{x}^{3}}+2mx

=2x2x2+m$.

$y’ = 0 Rightarrow 2x2x2+m = 0 Rightarrow left[ begin{array}{l}
x = 0\
{x^2} = frac{{ – m}}{2}
end{array} right.$

• Nếu $mge 0$ ta có bảng biến thiên:

Suy ra hàm số đạt cực tiểu tại$x=0$.

• Nếu $m<0$ ta có bảng biến thiên:

Suy ra hàm số đạt cực đại tại $x=0$.

Vậy hàm số đạt cực tiểu tại $x=0$ khi $mge 0$.

Câu 6: Chọn B.

• $Delta NAB$ cân tại $N$ nên $MNbot AB$.

• $Delta MCD$ cân tại $M$ nên $MNbot CD$.

• $CDbot leftABNright$$Rightarrow CDbot AB$.

• Giả sử $MNbot BD$

mà $MNbot AB$. Suy ra $MNbot leftABDright$Vôlívì$ABCD$làtdinđu

Vậy phương án B sai.

Câu 7: Chọn C.

Để hai điểm $A$ và $B$ nằm khác phía so với mặt phẳng thì

$left63mrightleft3mright<0Leftrightarrow 2<m<3$

Câu 8:  Chọn A.

Ta có: $underset{xto 1}{mathop{lim }},frac{sqrt{x+3}-2}{x-1}=underset{xto 1}{mathop{lim }},frac{x+3-4}{leftx1rightleftsqrtx+3+2right}=underset{xto 1}{mathop{lim }},frac{1}{sqrt{x+3}+2}=frac{1}{4}$.

Câu 9: Chọn D.

$overrightarrow{AB}=left1;1;2right$

Câu 10:  Chọn C.

Mặt cầu có tâm $Ileft1;2;1right$, bán kính $R=3$.

Câu 11: Chọn C.

${y}’=0Leftrightarrow {{x}^{2}}=0Leftrightarrow x=0$

Câu 12: Chọn D.

$V=pi intlimits_{1}^{4}{frac{{{x}^{2}}}{16}text{d}x}=pi left. frac{{{x}^{3}}}{48} right|_{1}^{4}=frac{21}{16}pi $

Câu 13: Chọn A.

Thể tích $V$ của khối chóp có diện tích đáy bằng $S$ và chiều cao bằng $h$ là $V=frac{1}{3}Sh$.

Câu 14: Chọn B.

Ta có:

+ $left{ begin{array}{l}
BC bot AB\
BC bot SA
end{array} right. Rightarrow BC bot leftSABright$
.

+ $left{ begin{array}{l}
CD bot AD\
CD bot SA
end{array} right. Rightarrow CD bot leftSADright$
.

+ $left{ begin{array}{l}
BD bot AC\
BD bot SA
end{array} right. Rightarrow BD bot leftSACright$
.

Suy ra: đáp án B. sai.

Câu 15:  Chọn A.

Ta có $int{{{x}^{2}}sqrt{4+{{x}^{3}}}}text{d}x$ $=frac{1}{3}int{sqrt{4+{{x}^{3}}}}text{d}left4+x3right$$=frac{1}{3}int{{{left4+x3right}^{frac{1}{2}}}text{d}left4+x3right}$$=frac{1}{3}.frac{2}{3}{{left4+x3right}^{frac{3}{2}}}+C$ $=frac{2}{9}sqrt{{{left4+x3right}^{3}}}+C$.

Câu 16:  Chọn D.

TXĐ: $Dleft( -infty ;,1 right]$.

Ta có

$underset{xto -infty }{mathop{lim }},frac{1-sqrt{1-x}}{x}$ $=underset{xto -infty }{mathop{lim }},frac{frac{1}{x}-sqrt{frac{1}{{{x}^{2}}}-frac{1}{x}}}{1}=0$.

Do đó, đồ thị hàm số có một tiệm cận ngang là $y=0$.

$underset{xto 0}{mathop{lim }},frac{1-sqrt{1-x}}{x}$$=underset{xto 0}{mathop{lim }},frac{x}{xleft1+sqrt1xright}$$=underset{xto 0}{mathop{lim }},frac{1}{left1+sqrt1xright}=frac{1}{2}$

Do đó, đồ thị hàm số không có đường tiệm cận đứng.

Vậy số đường tiệm cận ngang và đường tiệm cận đứng của đồ thị hàm số là $1$.

Câu 17: Chọn D.

Hình tứ diện có $6$ cạnh.

Câu 18:  Chọn D.

Dựng hình bình hành $ABFC$.

Ta có $EM text{//} SF$nên góc giữa $EM$ và $leftSBDright$ bằng góc giữa $SF$ và $leftSBDright$.

$FB text{//} AC$$Rightarrow FBbot leftSBDright$ do đó góc giữa $SF$ và $leftSBDright$ bằng góc $widehat{FSB}$.

Ta có $tan widehat{FSB}=frac{BF}{SB}=frac{AC}{SB}=sqrt{2}$.

Vậy chọn D.

Câu 19: Chọn D.

Câu 20:  Chọn C.

Điều kiện: $left{ begin{array}{l}
2x – 2 > 0\
{leftx3right^2} > 0
end{array} right. Leftrightarrow left{ begin{array}{l}
x > 1\
x ne 3
end{array} right.$
..

$2{{log }_{2}}left2x2right+{{log }_{2}}{{leftx3right}^{2}}=2$$Leftrightarrow {{log }_{2}}{{left2x2right}^{2}}+{{log }_{2}}{{leftx3right}^{2}}=2$

$Leftrightarrow {{log }_{2}}{{leftleft(2x2right)left(x3right)right}^{2}}=2$$Leftrightarrow 4{{leftleft(x1right)left(x3right)right}^{2}}=4$$ Leftrightarrow left[ begin{array}{l}
{x^2} – 4x + 3 = 1\
{x^2} – 4x + 3 =  – 1
end{array} right.$

$ Leftrightarrow left[ begin{array}{l}
{x^2} – 4x + 2 = 0\
{x^2} – 4x + 4 = 0
end{array} right. Leftrightarrow left[ begin{array}{l}
x = 2 + sqrt 2 \
x = 2
end{array} right.$vì$x>1$và$xne3$ $Rightarrow S=left{ 2;,2+sqrt{2} right}$

Vậy tổng các phần tử của $intlimits_{1}^{2}{fleft2xrighttext{d}x=4}$ bằng $4+sqrt{2}$.

Câu 21: Chọn B.

${{S}_{15}}={{u}_{1}}+{{u}_{2}}+{{u}_{3}}+…+{{u}_{15}}=leftu1+u15right+leftu2+u14right+leftu3+u13right+…+leftu7+u9right+{{u}_{8}}$

Vì ${{u}_{1}}+{{u}_{15}}={{u}_{2}}+{{u}_{14}}={{u}_{3}}+{{u}_{13}}=…={{u}_{7}}+{{u}_{9}}=2{{u}_{8}}$ và ${{u}_{3}}+{{u}_{13}}=80$

$Rightarrow S=7.80+40=600$.

Câu 22: Chọn A.

${{V}_{1}}=2h.pi {{left3rright}^{2}}=18lefth.pir2right=18V$

Câu 23: Chọn A.

Tập xác định của hàm số là $D=left0;+inftyright$.

Ta có $y’=frac{1}{xln 5}>0,text{ }forall xin left0;+inftyrightRightarrow $ hàm số đồng biến trên $left0;+inftyright$.

Vì hàm số xác định trên $D=left0;+inftyright$ nên đồ thị hàm số nằm bên phải trục tung và do đó đồ thị hàm số có tiệm cận đứng là trục tung.

Câu 24: Chọn A.

Trong $leftABCDright$, kẻ đường thẳng qua $M$và song song với $BD$ cắt $BC,text{ }CD,text{ }CA$ tại $K,text{ }N,text{ }I$.

Trong$leftSCDright$, kẻ đường thẳng qua $N$và song song với $SC$ cắt $SD$ tại $P$.

Trong$leftSCBright$, kẻ đường thẳng qua $K$và song song với $SC$ cắt $SB$ tại $Q$.

Trong$leftSACright$, kẻ đường thẳng qua $I$và song song với $SC$ cắt $SA$ tại $R$.

Thiết diện là ngũ giác $KNPRQ$.

Câu 25: Chọn A.

${y}’=frac{{{left1x2right}^{prime }}}{1-{{x}^{2}}}$$=frac{-2x}{1-{{x}^{2}}}=frac{2x}{{{x}^{2}}-1}$.

Câu 26: Chọn C.

Hàm số $y=log leftx3right$ có tập xác đinh là $d$.

Hàm số $y={{log }_{3}}leftx2right$ có tập xác đinh là $mathbb{R}backslash left{ 0 right}$.

Do đó hai hàm số đó không thể nghịch biến trên $c$được.

Mặt khác hàm số $y={{leftfrac25right}^{-x}}={{leftfrac52right}^{x}}$là hàm số có tập xác định là $mathbb{R}$ nhưng có cơ số $frac{5}{2}>1$ nên hàm số đồng biến trên $b$.

Hàm số $y={{leftfrace4right}^{x}}$ là hàm số có tập xác định là $mathbb{R}$có cơ số $a$ nên hàm số nghịch biến trên $mathbb{R}$.

Câu 27: Chọn D.

Ta có: $left{ begin{array}{l}
0 < b < 1 < c\
0 < a < 1 < d
end{array} right. Rightarrow left{ begin{array}{l}
{log _b}c < {log _b}1\
{log _d}a < {log _d}1
end{array} right. Rightarrow left{ begin{array}{l}
{log _b}c < 0\
{log _d}a < 0
end{array} right.$

Và $left{ begin{array}{l}
0 < a < b < 1\
1 < c < d
end{array} right. Rightarrow left{ begin{array}{l}
{log _a}a > {log _a}b\
{log _c}c < {log _c}d
end{array} right. Rightarrow left{ begin{array}{l}
1 > {log _a}b\
1 < {log _c}d
end{array} right.$

Vậy ${{log }_{c}}d$ là số lớn nhất.

Cách khác: có thể dùng máy tính với $left{ begin{array}{l}
a = 0,2\
b = 0,3\
c = 2\
d = 3
end{array} right.$ $left0<0,2<0,3<1<2<3right$.

Câu 28:  Chọn C.

Đặt $left{ begin{array}{l}
u = x\
{rm{d}}v = {{rm{e}}^{2x}}{rm{d}}x
end{array} right. Rightarrow left{ begin{array}{l}
{rm{d}}u = {rm{d}}x\
v = frac{1}{2}{{rm{e}}^{2x}}
end{array} right.$

Khi đó:

$intlimits_{0}^{100}{x.{{text{e}}^{2x}}text{d}x}=left. frac{1}{2}x{{text{e}}^{2x}} right|_{0}^{100}-frac{1}{2}intlimits_{0}^{100}{{{text{e}}^{2x}}text{d}x}=50{{text{e}}^{200}}-left. frac{1}{4}{{text{e}}^{2x}} right|_{0}^{100}

=50{{text{e}}^{200}}-frac{1}{4}{{text{e}}^{200}}+frac{1}{4}$$=frac{1}{4}left199texte200+1right$.

Câu 29: Chọn C.

Số phần tử của không gian mẫu $nleftOmegaright=C_{40}^{2}=780$.

Gọi $A$ là biến cố gọi hai học sinh tên Anh lên bảng, ta có $nleftAright=C_{4}^{2}=6$.

Vậy xác suất cần tìm là $PleftAright=frac{6}{780}=frac{1}{130}$.

Để lại một bình luận

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *