1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
B |
A | A | B |
B |
D | C | A | D | A |
|
|
|
|
|
|
|
|
|
|
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
B |
D |
A |
C | C | A | B | C |
D |
C |
|
|
|
|
|
|
|
|
|
|
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
D |
B |
C |
B |
C | A | A | D |
D |
D |
|
|
|
|
|
|
|
|
|
|
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
C |
D |
D |
B | D | C |
A |
C | C | B |
|
|
|
|
|
|
|
|
|
|
41 |
42 |
43 |
44 |
45 |
46 |
47 |
48 |
49 |
50 |
B |
D | A | B | C |
D |
A | B |
D |
A |
Câu 1. Chọn B.
Câu 2. Chọn A.
Điều kiện: ${{2}^{3-6x}}-1>0$ $Leftrightarrow 3-6x>0$$Leftrightarrow x<frac{1}{2}$.
Câu 3. Chọn A.
Điều kiện xác định: ${x^2} – 3 ne 0 Leftrightarrow left{ begin{array}{l}
x ne sqrt 3 \
x ne – sqrt 3
end{array} right.$ .
Vậy TXĐ: $D=mathbb{R}backslash left{ -sqrt{3};,sqrt{3} right}$.
Câu 4. Chọn B.
Ta có: $sin 2x=-frac{sqrt{3}}{2}=sin left
2x = – frac{pi }{3} + k2pi \
2x = frac{{4pi }}{3} + k2pi
end{array} right.$ $ Leftrightarrow left[ begin{array}{l}
x = – frac{pi }{6} + kpi \
x = frac{{2pi }}{3} + kpi
end{array} right. Leftrightarrow left[ begin{array}{l}
x = – frac{pi }{6} + kpi \
x = – frac{pi }{3} + kpi
end{array} right.$ .
Vậy $alpha =-frac{pi }{6}$ và $beta =-frac{pi }{3}$. Khi đó $alpha +beta =-frac{pi }{2}$.
Câu 5. Chọn B.
Giả sử hàm số cần tìm có dạng $y=a{{x}^{3}}+b{{x}^{2}}+cx+d$ với $ane 0$.
Dựa vào đồ thị hàm số ta thấy $underset{xto +infty }{mathop{lim }},y=+infty $ nên suy ra $a>0$. Vậy loại đáp án A.
Đồ thị hàm số cắt trục tung tại điểm có tọa độ là $left
Đồ thị hàm số đạt cực đại tại điểm có tọa độ là $left
x = 0\
x = 2
end{array} right.$
Vậy chọn B.
Câu 6. Chọn D.
Ta có: $T=2{{left
$=frac{2}{a+b}.sqrt{ab}.frac{sqrt{{{left
Câu 7.Chọn C.
Xét hàm số $y={{text{e}}^{1-2x}}$. Ta có: ${y}’={{left
Câu 8. Chọn A.
Theo bài ra: $ABCD$ là hình vuông cạnh bằng $a$.
Vậy hình trụ $T$ có bán kính $R=frac{a}{2}$, chiều cao $h=a$.
Diện tích toàn phần $S$ của hình trụ là: $S=2pi Rh+2pi {{R}^{2}}=2pi frac{a}{2}a+2pi {{left
Câu 9. Chọn D.
Điều kiện xác định:$xne frac{-m-1}{2}$.
Ta có ${y}’=frac{{{m}^{2}}+m-12}{{{left
Để hàm số nghịch biến trên khoảng $left
$left{ begin{array}{l}
frac{{ – m – 1}}{2} notin left
y’ < 0,,{rm{ }}forall ,x in left
end{array} right. Leftrightarrow left{ begin{array}{l}
{m^2} + m – 12 < 0\
– m – 1 notin left
end{array} right. Leftrightarrow left{ begin{array}{l}
m in left
m notin left
end{array} right. Leftrightarrow left[ begin{array}{l}
– 4 < m le – 3\
1 le m < 3
end{array} right.$
Câu 10. Chọn A.
Gọi số có $5$ chữ số cần tìm là $x=overline{{{a}_{1}}{{a}_{2}}{{a}_{3}}{{a}_{4}}{{a}_{5}}};text{ }{{a}_{1}},{{a}_{2}},{{a}_{3}},{{a}_{4}},{{a}_{5}}in A;text{ }{{a}_{1}}ne 0;text{ }{{a}_{5}}in left{ 0;2;4;6 right}$.
Công việc thành lập số $x$ được chia thành các bước:
– Chọn chữ số ${{a}_{1}}$ có $6$ lựa chọn vì khác $0$.
– Chọn các chữ số ${{a}_{2}},,text{ }{{a}_{3}},,text{ }{{a}_{4}}$, mỗi chữ số có $7$ lựa chọn.
– Chọn chữ số ${{a}_{5}}$ có $4$ lựa chọn vì số tạo thành chia hết cho $2$.
Số số thỏa mãn yêu cầu bài toán là: ${{6.7}^{3}}.4=8232$
Câu 11. Chọn B.
$underset{xto 4}{mathop{lim }},fleft
$fleft
Hàm số liên tục tại ${{x}_{0}}=4$ khi: $underset{xto 4}{mathop{lim }},fleft
Câu 12. Chọn D.
$T=sqrt
Câu 13. Chọn A.
Ta có $underset{xto 5}{mathop{lim }},frac{{{x}^{2}}-12x+35}{25-5x}$$=underset{xto 5}{mathop{lim }},frac{left
Vậy $underset{xto 5}{mathop{lim }},frac{{{x}^{2}}-12x+35}{25-5x}=frac{2}{5}$.
Câu 14. Chọn C.
Gọi ${{A}_{k}}$là biến cố người thứ $k$ bắn trúng bia với xác suất tương ứng là ${{P}_{k}}$$left
Biến cố có đúng hai người bắn trúng bia là: $left
Xác suất của biến cố này là:
$left
$=left
$=0,44$.
Vậy xác suất để có đúng hai người bắn trúng bia là $0,44$.
Câu 15. Chọn C.
Với $a>0$, $b>0$, ta có ${{a}^{2}}+{{b}^{2}}=7abLeftrightarrow {{left
$Leftrightarrow {{left
$Leftrightarrow 2ln left
Câu 16. Chọn A.
Phương trình tiếp tuyến của $left
Ta có ${y}’=-3{{x}^{2}}+6x,$ hệ số góc ${y}’left
Dấu $”=”$ xảy ra $Leftrightarrow {{x}_{0}}=1$$Rightarrow $ hệ số góc ${y}’left
Với ${{x}_{0}}=1Rightarrow {y}’left
Câu 17. Chọn B.
Tập xác định: $D=mathbb{R}$
Ta có: $y’=-3{{x}^{2}}-6x$
Cho $y’ = 0 Leftrightarrow – 3{x^2} – 6x = 0 Leftrightarrow left[ begin{array}{l}
x = 0 Rightarrow y = 1\
x = – 2 Rightarrow y = – 3
end{array} right.$
Bảng biến thiên:
Vậy điểm cực đại của đồ thị hàm số là $left
Câu 18. Chọn C.
Số hạng tổng quát trong khai triển là: ${{left
Cho $frac{56-7k}{12}=0Leftrightarrow k=8$.
Vậy số hạng không chứa $x$ trong khai triển là: ${{2}^{8}}C_{14}^{8}$.
Câu 19.Chọn D.
Ta có ${{log }_{9}}45=frac{log 45}{log 9}=frac{log 5+log 9}{log 9}=frac{log 5+2log 3}{2log 3}=frac{n+2m}{2m}=1+frac{n}{2m}$.
Câu 20. Chọn C.
Ta có $AC=C{D}’=A{D}’$
Tam giác $AC{D}’$ đều nên ${{S}_{AC{D}’}}=frac{1}{2}.AC.A{D}’.sin widehat{CA{D}’}=frac{A{{C}^{2}}sqrt{3}}{4}$.
Do đó $frac{A{{C}^{2}}sqrt{3}}{4}={{a}^{2}}sqrt{3}Rightarrow AC=2a$.
$AC$ là đường chéo hình vuông nên $AC=sqrt{2}AB$$Rightarrow AB=frac{AC}{sqrt{2}}=sqrt{2}a$.
Vậy thể tích của hình lập phương là ${{V}_{ABCD.{A}'{B}'{C}'{D}’}}=A{{B}^{3}}$$Rightarrow V=2sqrt{2}{{a}^{3}}$.
Câu 21. Chọn D.
Trên $left
Xét hàm số $y={{a}^{x}}$ . Với $x=a$$Rightarrow y={{a}^{a}}Rightarrow $Đồ thị hàm số $y={{a}^{x}}$ với $0<a$, $ane 1$ đi qua điểm $left
Câu 22. Chọn B.
Khối $12$ mặt đều thì có $30$ cạnh.
Câu 23. Chọn C.
Tập xác định $D=mathbb{R}$. Đạo hàm ${y}’=-3{{x}^{2}}+6x+9$; ${y}’=0$ $Leftrightarrow $ $x=-1$, $x=3$.
${y}’>0$ $Leftrightarrow $ $-1<x<3$; ${y}'<0$ $Leftrightarrow $ $x<-1$ hoặc $x>3$.
Vậy hàm số đồng biến trên $left
Câu 24. Chọn B.
Theo công thức diện tích mặt cầu ta có: $S=4pi {{R}^{2}}$.
Suy ra $R=sqrt{frac{S}{4pi }}=sqrt{frac{72pi }{4pi }}=sqrt{18}=3sqrt{2},left
Câu 25. Chọn C
Ta có $y=ln left
$x.{y}’+1=frac{-x}{x+1}+1=frac{1}{x+1}=,{{e}^{y}}$ . Vậy chỉ có đáp án C sai
Câu 26. Chọn A
Ta có : ${{u}_{n}}=frac{1}{1.3}+frac{1}{3.5}+…+frac{1}{left
$=frac{1}{2}left
Suy ra : $lim ,{{u}_{n}}=lim frac{n}{2n+1}=frac{1}{2}.$
Câu 27. Chọn A.
Ta có bán kính đáy của hình nón: $r=sqrt{{{l}^{2}}-{{h}^{2}}}=sqrt{{{25}^{2}}-{{15}^{2}}}=20text{ cm}$.
Khi đó thể tích của khối nón là $V=frac{1}{3}pi {{r}^{2}}h=frac{1}{3}pi {{.20}^{2}}.15=2000pi text{ }left
Câu 28.Chọn D.
Ta có:
$-frac{pi }{6}le xle frac{5pi }{6}$ $Rightarrow -frac{1}{2}le sin xle 1Rightarrow -1le -sin xle frac{1}{2}Rightarrow -4le -4sin xle 2$$Rightarrow 3le 7-4sin xle 9$
$Rightarrow frac{4}{3}le frac{12}{7-4sin x}le 4$. Hay $frac{4}{3}le yle 4$.
Vậy $M=4$, $m=frac{4}{3}$.
Câu 29. Chọn D
Ta có: ${y}’=frac{3}{2x+1}>0,forall xne -frac{1}{2}$$Rightarrow $hàm số $y=frac{x-1}{2x+1}$ đồng biến trên $left
$Rightarrow $$underset{left